Supporting Information

Preparation of high-yield and ultra-pure Au₂₅ nanoclusters: towards their implementation in real-world applications

Michael Galchenko¹, Raphael Schuster², Andres Black¹, Maria Riedner², Christian Klinke^{1,3,*}

1 Institute of Physical Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

2 Institute of Organic Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany

3 Department of Chemistry, Swansea University – Singleton Park, Swansea SA2 8PP, United Kingdom

Fig. S1: ¹H NMR spectrum of the "purified" Au₂₅ nanocluster in CD₂Cl₂. The set of peaks from 6.3 to 8.1 ppm correspond to phenyl groups from PPh₃ and SCH₂CH₂Ph (integral normalized to 175). The inset shows a ¹H NMR spectrum of a different sample of Au₂₅ NCs in CD₂Cl₂ with unbound SCH₂CH₂Ph present in solution giving rise to two triplets at 2.8 and 2.9 ppm. These signals originate from alpha and beta CH₂ groups in SCH₂CH₂Ph. Proton signals from such alpha/beta group and are known to shift downfield, be broadened or even become undetectable in ¹H or ¹³C NMR spectra upon binding to a Au NC surface.¹ All three effects were observed for the CH₂ groups in Au₂₅ NC-bound SCH₂CH₂Ph: We propose that the signal from beta CH₂ is shifted from 2.8 to 3.7 ppm as well as broadened whereas the alpha CH₂ group, closest to the Au core becomes undetectable.

In accordance to a previous report,² alpha CH_2 groups of tetraoctylammonium (TOA) molecules are assigned to a signal at 3.25 ppm. Its integral compared to the phenyl regions' is remarkably low compared to a previous report.² The singlet at 3.4 ppm is assigned to the CH_3 group of methanol residually present from the purification.³

Fig. S2: LC-MS measurement of Au_{25} NCs. Base peak and extracted ion chromatograms (BPC and EIC, respectively) obtained by electrospray ionization mass spectrometry (ESI-MS).

References

- O. Kohlmann, W. E. Steinmetz, X.-A. Mao, W. P. Wuelfing, A. C. Templeton, R. W. Murray, and
 C. S. Johnson, *J. Phys. Chem. B*, 2001, 105, 8801–8809.
- H. Qian, M. Zhu, E. Lanni, Y. Zhu, M. E. Bier, and R. Jin, J. Phys. Chem. C, 2009, 113, 17599– 17603.
- [3] R. Jin, C. Liu, S. Zhao, A. Das, H. Xing, C. Gayathri, Y. Xing, N. L. Rosi, R. R. Gil, and R. Jin, ACS Nano, 2015, 9, 8530–8536.