Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Gallium, neon and helium focused ion beam milling of thin films demonstrated for polymeric materials: study of implantation artifacts

Frances I. Allen^{a,b,c}, Nathan R. Velez^{a,b}, Rachel C. Thayer^d, Nipam H. Patel^{d,e}, Mary Ann Jones^f, Gregory F. Meyers^f, Andrew M. Minor^{a,b}

^aDepartment of Materials Science and Engineering, UC Berkeley, Berkeley, CA ^bNational Center for Electron Microscopy, Molecular Foundry, LBNL, Berkeley, CA ^cCalifornia Institute for Quantitative Biosciences, UC Berkeley, Berkeley, CA ^dDepartment of Integrative Biology, UC Berkeley, Berkeley, CA ^eDepartment of Molecular and Cell Biology, UC Berkeley, Berkeley, CA ^fCore R&D - Analytical Sciences, The Dow Chemical Company, Midland, MI

Email address: francesallen@berkeley.edu (Frances I. Allen)

Figure S1: Optical micrographs of (a) a blue butterfly wing scale without coating, and (b) a blue butterfly wing scale coated with \sim 0.8 nm gold-palladium. A dulling of the blue color of the scale after coating is observed.

Figure S2: Bright-field TEM images of FIB mills into the synthetic polymer thin film showing milled edges obtained for (a) gallium FIB, (b), neon FIB, (c) helium FIB clean-up after gallium FIB. The dark bands in (a) and (c) are due to implanted gallium. Note that the result shown in (b) is for a neon FIB mill where a lower dose was implemented, showing the formation of neon bubbles in thinned (i.e. incompleteley milled) regions.