Supplementary Information

Lithium Passivated MoO₃ Nanobelts Decorated Polypropylene Separator for Fast-Charging Long-Life Li-S Battery

Nahid Kaisar^{ab¶}, Syed Ali Abbas^{bc¶}, Jiang Ding^d, Hsin-An Chen^b, Chun-Wei Pao^b, Karunakara Moorthy Boopathi^b, Anisha Mohapatra^{bc}, Yu-Ting Chen^b, Sheng Hui Wu^e, Jason Fang^e, Shyankay Jou^a* and Chih Wei Chu^b*

^aDepartment of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd., Da'an District, Taipei City, 106, Taiwan E-mail: sjou@mail.ntust.edu.tw

^bResearch Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei 11529, Taiwan E-mail: gchu@gate.sinica.edu.tw

^cDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

^dCollege of Mechanical Engineering, Guangxi University, Nanning, China

eMaterial and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan

Keywords: lithium-sulfur batteries, MoO3 nanobelts, lithium polysulfide shuttle, separator

P.S. [¶] Share equal authorship. * Share equal corresponding authorship

Fig. S1 Homemade grinder machine used to prepare the MNBs.

Fig. S2 Height histogram of 50 different MNBs.

Fig. S3 Raman spectra of commercial bulk MoO₃ particles and as-prepared MNBs.

Fig. S4 (a) FE SEM image of S-EG cathode and (b-c) corresponding EDS mapping of Carbon and Sulfur.

Fig. S5 FESEM images of pristine separator (a) before cycle, (b) after cycle; inset: EDS mapping of S on top of pristine separator after 500 charge-discharge cycle at 5C rate.

Fig. S6 FESEM (top view) image of MNBs coated onto a PP separator using a spray gun (a) before cycle (b) after cycle (c-e) corresponding EDS mapping of Mo, O, and S.

Fig. S7 Photograph of a pristine PP separator and an MNBs-coated PP separator and bending test.

Fig. S8 FE-SEM images of Li foil (a) before cycle, (b-c) after cycle, incorporated pristine separator and MNBs separator respectively; inset: corresponding EDS mapping of S. Li-S battery was dissembled after 500 charge-discharge at 5C rate.

Fig. S9 Top and side views of the electronic structure of the Li-passivated MoO₃ (pink: Li; cyan: Mo; red: O).

Fig. S10 Reaction coordinate and transition state structure for the surface diffusion of Li on the Li-passivated MoO_3 .

Fig. S11 Cycling performance of LSB using different amount of S loading in cathode, using MNBs-coated separator.

Fig. S12 Cycling performance of LSB incorporating different MNBs-loaded separators, measured at a rate of 1C.

Fig. S13 Self-discharge phenomenon of an LSB, characterized through its open-circuit voltage.

Table S1 Population analyses of atoms near the bond sites in (a) Li_2S_8/MoO_3 with charge 0, (b) Li_2S_8/MoO_3 with charge +2, (c) Li_2S_4/MoO_3 with charge 0, and (d) Li_2S_4/MoO_3 with charge +2.

(a) Li_2S_8 , Charge = 0

	Before adsorption As adsorption			
S	-0.11	0.031		
Li	+0.44	+0.66		
0	-0.94	-1.23		
Мо	+2.74	+2.75		

(b) Li_2S_8 , Charge = +2

	Before adsorption	As adsorption
--	-------------------	---------------

S	-0.10	-0.021
Li	+0.56	+0.79
0	-0.86	-1.13
Мо	+2.77	+2.78

(c) Li_2S_4 , Charge = 0

	Before adsorption	As adsorption
S	-0.20	-0.028
Li	+0.40	+0.53
0	-0.94	-1.14
Мо	+2.74	+2.75

(d) Li_2S_4 , Charge = +2

	Before adsorption	As adsorption
S	-0.18	-0.016
Li	+0.51	+0.65
0	-0.86	-1.03
Мо	+2.75	+2.76

Table S2: Comparison of Electrochemical performance of this work with previous work on modification of separator in order to achieve stable Li-S battery.

Modified Separator	Sulfur Loading (mg cm ⁻²)	Sulfur Content (wt %)	Current rate (1C = 1675 mAhg ⁻¹)	Number of cycles	Degradation rate per cycle (%)	Reference
Carbon Black	1.1-1.3	-	0.5 C	200	0.19	1
Single-Wall Carbon Nanotube	1.5	75	0.2 C	300	0.18	2
MWCNT	2	65	1 C	300	0.14	3
PVDF CB	1.5	65	0.2 C	500	0.09	4
Nafion	0.53	50	0.5 C	500	0.08	5
GO/Nafion	4	60	0.5 C	200	0.18	6
Mesoporous carbon	1.5	50	1 C	500	0.071	7
Microporous/ PEG	2	65	0.2 C	500	0.109	8
PVDF KOH activated CB	7	70	0.5 C	500	0.084	9
PEDOT:PSS	1	64	0.25 C	1000	0.0364	10
Silica Nanoparticles	1.2	48	0.2 C	200	0.175	11
N-Rich Porous Carbon	1.4	70	0.2 C	200	0.254	12
Black Phosphorous	1.5-2	80	0.2 C	100	0.14	13
BaTiO ₃	3	60	0.1 C	50	0.34	14
MoS ₂	-	65	0.5 C	600	0.083	15
COF-CNT		75	0.2 C	300	0.13	16
rGO/CeO ₂	2	80	0.1 C	100	0.22	17

Carbon Flakes	1	60	0.5 C	500	0.071	18
MOF/Nafion	-	70.5	0.1 C	200	0.1225	19
$C-WS_2$	1.5-4.2	70	1 C	1000	0.045	20
MoO ₃ NBs	1.5	64	1 C	1000	0.026	This Work
MoO ₃ NBs	1.5	64	2 C	1000	0.028	This Work
MoO ₃ NBs	1.5	64	3 C	1000	0.033	This Work
MoO ₃ NBs	1.5	64	4 C	1000	0.038	This Work
MoO ₃ NBs	1.5	64	5 C	5000	0.014	This Work

Reference

- 1. S.H Chung and A. Manthiram, *Adv. Funct. Mater.* 2014, 24, 5299-5306.
- 2. C. H. Chang, S. H. Chung and A. Manthiram, *Small*, 2016, **12**, 174-179.
- **3.** S.H Chung and A. Manthiram *J. Phys. Chem. Lett.* 2014, **5**, 1978-1983.
- **4.** H. Yao, K. Yan, W. Li, G. Zheng, D. Kong, Z.W Seh and Y. Cui, *Energy Environ. Sci.* 2014, **7**, 3381-3390.
- J.Q. Huang, Q. Zhang, H. J. Peng, X.Y. Liu, W.Z. Qian, and F. Wei, *Energy Environ. Sci.* 2014, 7, 347-353.
- 6. T. Z. Zhuang, J. Q. Huang, H. J. Peng, L. Y. He, X. B. Cheng, C.M. Chen, and Q. Zhang, *Small*, 2016, **12**, 381-389.
- J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert, and L. Giebeler, *Adv. Funct. Mater.* 2015, 25,5285-5291.
- 8. S.H. Chung, and A. Manthiram, *Adv. Mater.* 2014, **26**, 7352-7357.
- **9.** G. He, C. J. Hart, X. Liang, A. Garsuch and L. F. Nazar, *ACS Appl. Mater. Interfaces* 2014, **6**, 10917-10923.
- 10.S. A. Abbas, M. A. Ibrahem, L. H. Hu, C. N. Lin, J. Fang, K. M. Boopathi, P. C. Wang, L. J. Li and C. W. Chu, *J. Mater. Chem. A*, 2016, *4*, 9661-9669.
- 11.J. Li, Y. Huang, S. Zhang, W. Jia, X. Wang, Y. Guo, D. Jia and L. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 7499-7504.
- 12.U. Stoeck, J. Balach, M. Klose, D. Wadewitz, E. Ahrens, J. Eckert and L. Giebeler, *J. Power Sources*, 2016, 309, 76-81.
- **13.** J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong and Y. Cui, *Adv. Mater.* 2016, **28**, 9797-9803.
- 14.T. Yim, S. H. Han, N. H. Park, M. S. Park, J. H. Lee, J. Shin, J.W. Choi, Y. Jung, Y. N. Jo, J. S. Yu and K. J. Kim, *Adv. Funct. Mater.* 2016, **26**, 7817-7823.
- **15.**Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li and Z. Tang, *Adv. Mater.* 2017, **29**, 1606817.
- **16.**J. Yoo, S. J. Cho, G. Y. Jung, S. H. Kim, K. H. Choi, J. H. Kim, C. K Lee, S. K. Kwak and S. Y. Lee, *Nano let.* 2016, **16**, 3292-3300.
- **17.**S. Wang, F. Gao, Y. Zhao, N. Liu, T, Tan and X. Wang, *Nanoscale Research Letters*, 2018, **13**, 377.
- **18.**B. Zheng, L. Yu, Y. Zhao and J. Xi, *Electrochimica Acta*, 2018.
- **19.**S. H. Kim, J. S. Yeon, R. Kim, K. M. Choi and H. S. Park, *J. Mater. Chem. A*, 2018.
- 20.S. Ali, M. Waqas, X. Jing, N. Chen, D. Chen, J. Xiong and W. He, ACS Appl. Mater. Interfaces.