Supporting Information

Superior Oxygen Electrocatalysts Derived from Predesigned Covalent

Organic Polymers for Zinc-Air Flow Batteries

Jianing Guo,^{+a} Tingting Li,^{+a} Qiuli Wang,^a Ningyuan Zhang,^a Yuanhui Cheng,^a Zhonghua Xiang ^{*a}

^a Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, College of Energy, Beijing University of Chemical Technology, Beijing, 100029, PR, China.

+ Equal contribution

Email: xiangzh@mail.buct.edu.cn

1. Materials

All reagents were obtained from commercial sources and were used without further purification unless otherwise stated. Meso-Tetra (p-bromophenyl) porphine was purchased from Frontier Scientific. 3,8-Dibromophenanthroline was purchased from Changchun Third Party Pharmaceutical Technology Co. Ltd. Nickel(II) chloride was purchased from Energy Chemical. Bis(1,5-cyclooctadiene)nickel(0) ([Ni(cod)₂]) and Iron(III)chloride anhydrous was purchased from Strem Chemicals. 1,5-Cyclooctadiene (cod), 2,2'-Dipyridyl, tetraethyl orthosilicate (TEOS) and N,Ndimethylformamide (DMF) were purchased from J&K Chemical Technology. Anhydrous ethanol, trichloromethane, and hydrofluoric acid (HF) were purchased from Beijing Chemical Works. Tetrahydrofuran and formic acid were purchased from Beijing Tong Guang Fine Chemical Company. Commercial Pt/C catalyst, Iridium(IV) oxide (IrO₂) and Carbon black were bought from Alfa Aesar Chemical Co. Ltd. Nafion solution was purchased from DuPont Company.

2. ORR Measurements

The cyclic voltammetry (CV) experiments were conducted in an O2-saturated 1 M KOH

solution for the ORR from 0.05 to 1.25 V (vs RHE) with a scan rate 100 mV·s⁻¹. RRDE measurements were conducted by liner sweep voltammetry (LSV) from 0.05 to 1.15 V (vs RHE) at a scan rate of 5 mV s⁻¹ at 1600 rpm. The number of electrons (*n*) involved in the ORR can be calculated from the Koutecky–Levich (K–L) equation:

$$\frac{1}{J} = \frac{1}{J_L} + \frac{1}{J_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{J_K}$$
$$B = 0.62nFC_o(D_o)^{2/3}v^{-1/6}$$

where *J* is the measured current density, J_K and J_L are the kinetic- and diffusion-limiting current densities, *B* is the reciprocal of the slope, ω is the angular velocity of the electrode (rad s⁻¹), *n* is transferred electron number, *F* is the Faraday constant (*F* = 96485 C mol⁻¹), *Co* is the bulk concentration of O₂ (7.8 × 10⁻⁷ mol cm⁻³), *Do* is the O₂ diffusion coefficient (1.43 × 10⁻⁵ cm² s⁻¹), *v* is the kinematic viscosity of the electrolyte (1 × 10⁻² cm² s⁻¹).

The following equations were used to calculate *n* (the apparent number of electrons transferred during ORR).

$$n = 4 \times \frac{I_d}{I_d + I_r/N}$$

where I_d is disk current, I_r is ring current, and N = 0.37 is the current collection efficiency of the Pt ring.

The ORR stability was investigated by continuous potential cycling in O2-saturated 1M KOH solution between 0.65 V and 0.95 V (vs RHE) with the scan rate at 100 mV s⁻¹. And after 5000 cycles, the ORR steady-state polarization measurements were conducted in O2-saturated 1 M KOH solution with scanning rates of 5 mV s⁻¹ and rotation rate at 1600 rpm.

3. OER Measurement

OER tests were conducted in an O2-saturated 1 M KOH electrolyte with a scan rate of 5 mV

s⁻¹ at room temperature. The potential range was from 1.05 to 1.85 V (vs RHE). All data were corrected using the iR-correction, where i is the current and R is the electrolyte ohmic resistance, which was obtained via high-frequency A.C impedance. The electrochemical impedance spectroscopy measurements were performed within a frequency range from 1×10^6 to 1×10^{-3} Hz. Stability was investigated by continuous potential cycling in O₂-saturated 1 M KOH solution between 1.45 V and 1.75 V (vs RHE) with a scan rate of 100 mV s⁻¹. And after 1000 cycles, the OER steady-state polarization measurements were conducted in O2-saturated 1 M KOH solution with scanning rates of 5 mV s⁻¹.

Fig. S1. a) XPS spectra of CCOP_{TDP}-FeNi-SiO₂. b) XPS spectra of N 1s for CCOP_{TDP}-FeNi-SiO₂.

Fig. S2. a) The SEM image for COP_{TDP}. b) HRTEM image of CCOP_{TDP}-FeNi-SiO₂. c) HRTEM image of CCOP_{TDP}-FeNi.

Fig. S3. High-angle annular dark-field (HAADF)-STEM image of $CCOP_{TDP}$ -FeNi-SiO₂ and corresponding element maps of C and N elements for $CCOP_{TDP}$ -FeNi-SiO₂.

Fig. S4. High-angle annular dark-field (HAADF)-STEM image of CCOP_{TDP}-FeNi and corresponding element maps of C, Fe, Ni and N elements for CCOP_{TDP}-FeNi.

Fig. S5. a) Rotating disk electrode (RDE) linear sweep voltammograms of $CCOP_{TDP}$ -FeNi-SiO₂ at different rotating rates in the alkaline solution. b) Koutecky-Levich plots of $CCOP_{TDP}$ -FeNi-SiO₂ derived from RDE voltammograms.

Fig. S6. a) Rotating disk electrode (RDE) linear sweep voltammograms of Pt/C at different rotating rates in the alkaline solution. b) Koutecky-Levich plots of Pt/C derived from RDE voltammograms.

Fig. S7. a) Rotating disk electrode (RDE) linear sweep voltammograms of CCOP_{TDP}-FeNi at different rotating rates in the alkaline solution. b) Koutecky-Levich plots of CCOP_{TDP}-FeNi derived from RDE voltammograms.

Fig. S8. a) Rotating disk electrode (RDE) linear sweep voltammograms of $CCOP_{TDP}$ at different rotating rates in the alkaline solution. b) Koutecky-Levich plots of $CCOP_{TDP}$ derived from RDE voltammograms.

Fig. S9. Electron transfer number.

Fig. S10. OER LSV curves of $CCOP_{TDP}$ -FeNi-SiO₂ before and after 1 000 potential cycles ranging from 1.45 V and 1.75 V (vs RHE) in O₂-saturated 1 M KOH.

Fig. S11. a), b) and c) Cyclic voltammograms at various scan rates between 0.95 and 1.15 V vs. RHE for ORR in nitrogen saturated 1M KOH electrolyte for $CCOP_{TDP}$ -FeNi-SiO₂, $CCOP_{TDP}$ -FeNi and $CCOP_{TDP}$, respectively. d), e) and f) Cyclic voltammograms at various scan rates between 1.15 and 1.35 V vs. RHE for OER in nitrogen saturated 1M KOH electrolyte for $CCOP_{TDP}$ -FeNi-SiO₂, $CCOP_{TDP}$ -FeNi and CCOP_{TDP}, respectively.

Fig. S12. a) The capacitive current at 1.05 V vs RHE for ORR at various scan rates for $CCOP_{TDP}$ -FeNi-SiO₂, $CCOP_{TDP}$ -FeNi and $CCOP_{TDP}$, respectively. b) The capacitive current at 1.25 V vs RHE for OER at various scan rates for $CCOP_{TDP}$ -FeNi-SiO₂, $CCOP_{TDP}$ -FeNi and $CCOP_{TDP}$ -FeNi-SiO₂, $CCOP_{TDP}$ -FeNi and $CCOP_{TDP}$, respectively.

Fig. S13. Charge-discharge cycling performance of a rechargeable Zn-air flow battery based on $CCOP_{TDP}$ -FeNi-SiO₂ electrocatalyst at a current density of 10 mA cm⁻².

Catalyst	Loading ug/cm ²	Electrolyt e	E _{ORR,} overpotential	E _{1/2} / V	E _{OER,} overpotential @10mA cm ⁻ ² /V	ΔE/ V	Ref
FeNi ₂ Se ₄ –NrGO	450	1М КОН	0.3	~0.6	0.17	0.8	[1]
N-GT(FeCoNi)	600	1M NaOH	0.22	0.89	~0.32	0.66	[2]
NCNT/CoONiO- NiCo	210	1M KOH	0.26	0.83	0.27	0.67	[3]
N-CG-CoO	220	1M KOH	~0.33	0.81	0.34	0.76	[4]
NC-Co ₃ O ₄ -90	/	1M KOH	0.32	0.87	0.36	0.72	[5]
(α-MnO ₂) ₂ - (LaNiO ₃) ₃ /CNTs	500	1M KOH	~0.4	0.69	0.55	1.09	[6]
MnNiCoO4/N- MWCNT	260	1M KOH	0.28	0.88	0.39	0.74	[7]
Co ₄ N/CNW/CC	/	1M KOH	~0.33	0.80	0.31	0.74	[8]
Co ₃ O ₄ @N- rmGO	100	1M KOH	~0.27	~0.88	0.31	0.74	[9]
NCNT/CoxMn ₁₋ _x O	210	1M KOH	0.27	0.84	0.34	0.73	[10]
CCOP _{TDP} -FeNi- SiO ₂	386	1М КОН	0.24	0.89	0.31	0.65	This work

Table S1. The comparison of the catalytic activity toward the ORR and OER in 1 M KOH or 1 M NaOH of the $CCOP_{TDP}$ -FeNi-SiO₂ with other reported catalysts.

 $\Delta E = E_{j=10, \text{ OER}} - E_{1/2, \text{ ORR}}$ E_{ORR, overpotential}=1.23-E_{onset potential} E_{OER, overpotential@10mA cm⁻²=E_{j=10mA cm}⁻²-1.23}

Table S2. The element ana	lysis of CCOP _{TDP}	-FeNi and CCOP ₁	TDP-FeNi-SiO ₂
---------------------------	------------------------------	-----------------------------	---------------------------

Sample	C(%)	N(%)
CCOP _{TDP} -FeNi	66.66	3.28
CCOP _{TDP} -FeNi-SiO ₂	88.42	1.39

 Sample
 Fe (%)
 Ni (%)

 CCOP_{TDP}-FeNi
 6.20
 9.13

 CCOP_{TDP}-FeNi-SiO₂
 0.72
 0.91

Table S3. The ICP test of CCOP_{TDP}-FeNi and CCOP_{TDP}-FeNi-SiO₂

Reference

- [1] S. Umapathi, J. Masud, A. T. Swesi, M. Nath, Adv. Sustainable Systems 2017, 1, 1700086.
- [2] S. Gupta, L. Qiao, S. Zhao, H. Xu, Y. Lin, S. V. Devaguptapu, X. Wang, M. T. Swihart, G. Wu, Adv. Energy Mater. 2016, 6, 1601198.
- [3] M. P. Xien Liu, Min Gyu Kim, Shiva Gupta, Gang Wu, Jaephil Cho, Angew. Chem. Int. Ed. 2015, 54, 9654.
- [4] S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci. 2014, 7, 609.
- [5] C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu, H. Zhang, Z. Liu, C. Cheng, S. J. Pennycook, J. Wang, Adv. Mater. 2017, 29.
- [6] H. Ma, B. Wang, RSC Adv. 2014, 4, 46084.
- [7] X. Yu, A. Manthiram, Catal. Sci. Technol. 2015, 5, 2072.
- [8] F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc. 2016, 138, 10226.
- [9] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, *Nat. Mater.* 2011, 10, 780.
- [10] X. Liu, M. Park, M. G. Kim, S. Gupta, X. Wang, G. Wu, J. Cho, *Nano Energy* 2016, 20, 315.