Supporting Information

Controlled crystal facet of MAPbI₃ perovskite for highly efficient and stable solar cell via nucleation modulation

Yongchao Ma,^{a,b} Pesi Mwitumwa Hangoma,^a Woon Ik Park,^{b,c} Jae-Hong Lim,^{b,d} Yun Kyung

Jung,^e Jung Hyun Jeong,^a Sung Heum Park,*^{a, b} and Kwang Ho Kim*^b

^aDepartment of Physics, Pukyong National University, Busan, 48513, South Korea

^bHybrid Interface Materials Global Frontier Research Group, Pusan National University,

Busan 46241, South Korea

°Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering &

Technology (KICET) 101 Soho-ro, Jinju 52851, South Korea

^dElectrochemistry Department, Korea Institute of Materials Science, 797 Changwondaero,

Changwon, Gyeongnam, 51508, South Korea

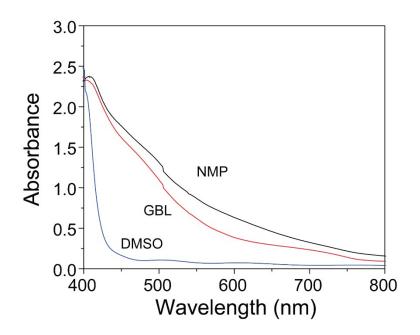
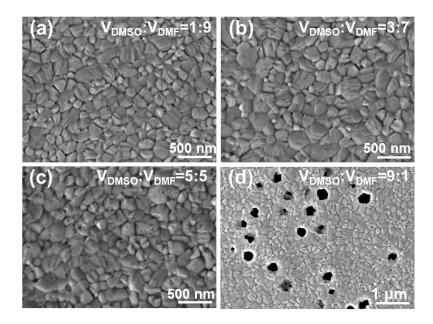
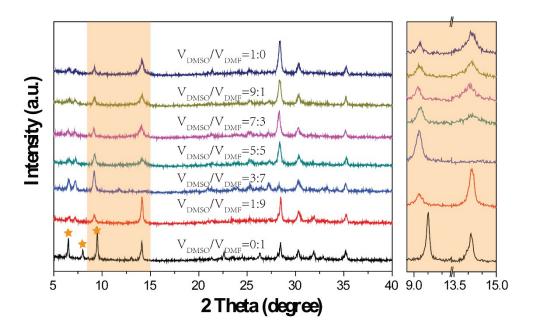
eSchool of Biomedical Engineering, Inje University, Inje-ro 197, Gimhae, Gyeongnam

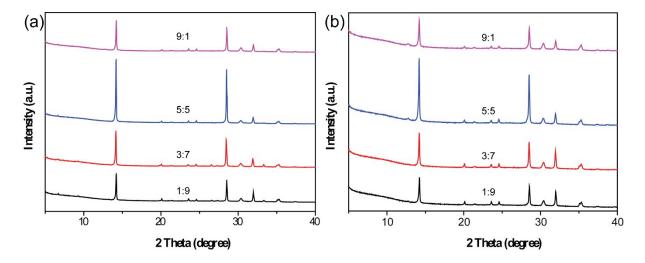
50834, South Korea

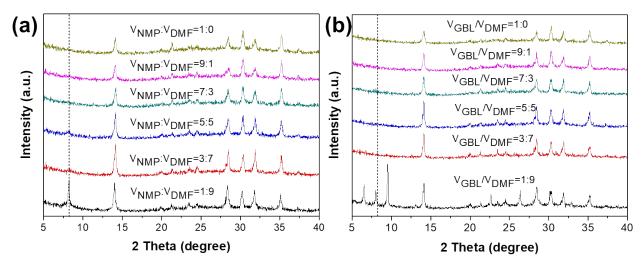
AUTHOR INFORMATION

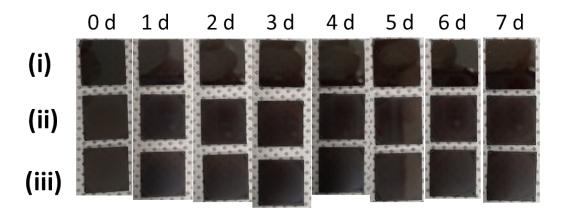
Corresponding Authors

*E-mail: spark@pknu.ac.kr, kwhokim@pusan.ac.kr


Fig. S1 UV-vis spectroscopy of the films prepared with DMSO, GBL and NMP solvent


Fig. S2 Morphology variation of the precursor films with increasing DMSO concentration in the mixed solvent prepared by conventional annealing method


Fig. S3 XRD patterns of the precursor films prepared with different solvent ratios of DMSO and DMF before annealing.

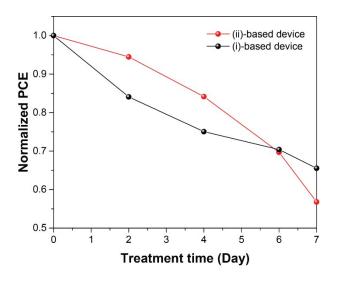

Fig. S4 XRD patterns of the complete films prepared with different solvent ratios of DMSO and DMF annealed by (a) merged annealing and (b) conventional annealing method.

Fig. S5 XRD patterns of the precursor films with varied mixing ratio of (a) NMP:DMF and (b) GBL:DMF.

Fig. S6 The photographs of perovskite films with increasing exposure time: (i) perovskite grains with high grain orientation, (ii) perovskite grains with small grain orientation and large grain size, and (iii) perovskite grains with high grain orientation and large grain size, respectively.

Fig. S7 Photovoltaic performance for the typical devices as a function of time: (i) perovskite grains with high grain orientation, (ii) perovskite grains with small grain orientation and large grain size.