SUPPLEMENTARY INFORMATION

Multi-layer graphene as a selective detector

for future lung cancer biosensing platforms

E. Kovalska^{1*}, P. lesongeur^{1,2}, B. Hogan¹, and A. Baldycheva¹

¹Department of Engineering and Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United Kingdom

²Mechanics and Micromechanics Engineering School, École Nationale Supérieure de Mécanique et des Microtechniques, 26 rue de l'épitaphe, 25030 Besançon Cedex, France

Supporting Information Contains:

- S1. Calculation of the contact resistance.
- S2. Sheet resistance analysis.
- S3. The variation of sheet resistance as a function of concentration.

S1. Calculation of the contact resistance

In order to measure sheet resistance (ρ_g) of graphene samples as a function of concentration (*C*) of "cancer markers" we used standard two probe method. This method gives value of two probes resistance: $R_{2p} = 2R_c + R_g$, where R_g (equal to $\rho_g L/W$, L – length, W – with of sample) is the resistance of the graphene layers and R_c is the contact resistance. The calculation of contact resistance was provided¹ followed by the analysing the sheet resistance of graphene samples (see **SFig. 1**) using the formula: $\rho_g = (R_{2p}^1 - R_{2p}^2)(L^1/W^1 - L^2/W^2)$.

2	A	В	С	D	E	F	G	н	I	J	K	L	М	N	0	P
1																
2	Calculati	ion of conta	ct resistanc	e for anot	her sample	(shear e	xfoliated g	raphite or	n PP fibre)							
3																
4									0 -(P	Dev1 p	Dev2	Dev1/14	Dev1 D	ev2/\wDe	w21-1	
5	Dev	R _{2p} avg (Ω	W (mm)	L (mm)					PG-(N2	p -1.	2p /	-L	/ ••	-	_	
6	A	297028.8	2.4	5					$R_{c} = (R_{2p}^{Devi} - \rho_{G}(L^{Devi}/W^{Devi}))/2$							
7	в	500838.9	2.4	10					D -D 13D							
8	с	668553.4	2.4	15					R _{2p} =R _G +2R _c							
9	D	932502.2	2.4	20												
10	E	1.19E+06	2.4	25												
11	F	1.41E+06	2.4	30												
12																
13																
14																
15	Dev1	Dev2	ρ _G (Ω/sq)	$R_c(\Omega)$	Abs Rc											
16	A	В	97828.88	46609.3	46609.3											
17	В	С	80502.93	82705.03	82705.03											
18	С	D	126695.5	-61646.7	61646.65											
19	D	E	122797.3	-45404.4	45404.41						Contacts at L distance:					
20	E	F	105120	46665	46665						A	В	С	D	E	F
21	A	С	89165.9	55633.23	55633.23						5 mm	10 mm	15 mm	20 mm	25 mm	30 mm
22	A	D	101675.8	42602.13	42602.13											
23	Α	E	106956.1	37101.73	37101.73											
24	A	F	106588.9	37484.26	37484.26											
25	В	D	103599.2	34587.8	34587.8											
26	В	E	109998.6	21255.77	21255.77											
27	В	F	108778.9	23796.69	23796.69											
28	С	E	124746.4	-55555.8	55555.81											
29	С	F	118204.3	-35111.6	35111.65											
30	D	F	113958.7	-8576.65	8576.646	42315.74	4 average	this is th	e contact re	sistance in	n Ohm					

SFig. 1. Calculation of the contact resistance (Excel).

S2. Sheet resistance analysis

Multiple I_{ds} - V_{gs} measurements (based on two probe method) required to be recalculated to the sheet resistance value using Ohm's law for each step and then average it. To simplify the sheet resistance analysis the Matlab code (**SFig. 2**) was created. The code's interface is user-friendly and allows convenient way of sheet resistance evaluation.

The code is using a loop which is applied for each folder with concentration data followed by an import of the data of each measure. Then sheet resistance for each value of current (±1V) was measured and averaged. After all, we have an average sheet resistance value (ΔR_s) for each concentration. Results of all measurements are stored in the list, thus we can obtain a graph by plotting the variation of sheet resistance as a function of the concentration. The code also calculates the initial sheet resistance value (the file has to be stored in the root folder) that will appear on the graph afterwards.

```
function [C_Rs_vector]=fonction_calcul_resistance(adresse,W,L,Rc)
    rep = strcat(adresse, '\');
    %Data
    Concentration=[0 1/7 1/6 1/5 1/4 1/3]*10e5
    %Calculation of the initiale resistance
    ext = '*.dat';
    path = fullfile(rep,ext);
    list=dir(path);
    G = {list.name};
    InitialValue =importdata(char(strcat(rep,G(1))));
    Vi= InitialValue.data(:,1);
    Ii= InitialValue.data(:,2);
   Rinitiale=mean(Vi./Ii)-2*Rc;
    %This loop will start to calculate resistance of the 1:2
    %conccentration, to finish with the 1:6
    for k = 1:5
        folder=strcat(rep, strcat('1-', int2str(k+1)), '\');
        ext = '*.dat';
        chemin = fullfile(folder,ext);
        liste = dir(chemin);
        N=\{ \texttt{liste.name} \}; \ \text{\%List of all the .dat file for the 1:k concentration}
        DeltaResistanceK = [];
        %Calculate the variation of resistance for each measure of the same
concentration
        for i = 1:length(N)
            nameFile = strcat(folder,N(i));
            File =importdata(char(nameFile););
            V= File.data(:,1);
            I= File.data(:,2);
            R=V./I;
            Ravg=mean(R);
            DeltaResistanceK(i) = Ravg-2*Rc-Rinitiale;
        end
        DeltaResistance1(k) = mean (DeltaResistanceK); % Calculate the average of all
the previous measurement
    end
    DeltaResistance1=[DeltaResistance1 0];
    Resistance=flip(DeltaResistance1)
    Sheet Resistance=Resistance*W/L;
    C_Rs_vector=[Concentration; Sheet_Resistance]
end
```

SFig. 2. Matlab code for sheet resistance estimation.

S3. The variation of sheet resistance as a function of concentration

SFig. 3. Sensitivity analysis of f-MLG and p-MLG electrodes at various concentrations of cancer marker solutions (ethanol – \bigcirc , isopropanol – \bigstar , acetone – \diamondsuit). Changes in the value of sheet resistance (ΔR_s , small graph insertions) averaged for f-MLG (**a**–**c**) and p-MLG (**d**–**f**) as a function of CMs concentration.

^{1.} S. Russo, S. et al. *Physica E* 2010, **42**, 677–679.