A Comparative Study of Pomegranate Sb@C Yolk-

Shell Microspheres as Li and Na-Ion Battery Anodes

Junhua Song^{1,2}, Dongdong Xiao¹, Haiping Jia¹, Guomin Zhu¹, Mark Engelhard¹, Biwei Xiao¹, Shuo Feng², Dongsheng Li¹, David Reed¹, Vincent L. Sprenkle¹, Yuehe Lin^{2*} and Xiaolin Li^{1*}

- 1. Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland, WA, 99354, USA
- 2. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA

99164, USA

Correspondence should be addressed to: <u>yuehe.lin@wsu.edu</u>; <u>xiaolin.Li@pnnl.gov</u>

Figure S1. (A) A typical TEM image of the core-shell structured $Sb_2O_3@PDA@SiO_2$. (B) A typical STEM image of a $Sb_2O_3@PDA@SiO_2$ particle. (C) to (G) The corresponding elemental mapping of Sb, O, N, C and Si for the particle in (B). (H) Overlapped elemental mapping of (C) to (G). The scale bars are 200 nm.

Figure S2. (A) A typical XRD pattern of Sb@C MSs. (B) TGA curve of Sb@C MSs.

Figure S3. (A-C) Typical SEM images of Sb@C MSs; inset in C is a typical TEM image of yolk-shell Sb@C primary particle. The scale-bar is 200nm. (D) STEM image of a typical Sb@C MS. (E-G) The corresponding elemental mapping of carbon, nitrogen and antimony. (H) Overlapped elemental mapping of (E) to (G).

Figure S4. SEM images of Sb@C MS electrodes cycled in SIBs (A-B) and LIBs (C-D). Some Sb@C MSs are marked with dashed yellow circles.

Table S1. Impedance evolution of Sb@C MSs in LIBs and SIBs. R _{ohm} and R _{ct} represent ohmic a	nd
harge-transfer resistances, respectively.	

	Fresh		1 st		5 th		10 th		50 th		150 th		Replaceme nt	
	Li	Na	Li	Na	Li	Na	Li	Na	Li	Na	Li	Na	Li	Na
R _{ohm} (Ω)	3.8	5.1	4.1	3.7	4.7	4.2	4.9	4.2	6.1	10.4	7.5	8.6	3.5	4.1
$R_{ct}(\Omega)$	94	630	19	37	13	30	13	34	21	188	46	295	30	107

Figure S5. (A) STEM image of a Sb@C MS cycled in LIB and the corresponding elemental mapping of carbon (B), nitrogen (C) and Sb (D).

Figure S6. (A) STEM image of a Sb@C MS cycled in SIBs and the corresponding elemental mapping of carbon (B), nitrogen (C) and Sb (D).