Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units

Xiao Li, Lei Wang, Wenbin You, Linshen Xing, Xuefeng Yu, Yuesheng Li, and Renchao Che*

1. Synthesis of ball-like ZnCo₂O₄

Briefly, ZnCl₂ (1 mmol) and CoCl₂·6H₂O (2 mmol) were dissolved in a mixed solvent (50 ml EG and 5 ml deionized water) under magnetic stirring at room temperature. Then, 30 mmol of NH₄HCO₃ were added into the mixture. After being stirred for 30 min, the resultant solution was transferred into a Teflon lined stainless-steel autoclave with a capacity of 100 mL, and heated at 200°C for 24 h in an oven. The ball-like ZnCo₂O₄ precursors were collected by centrifuging, washed with water three times and ethanol four times, and finally dried in a vacuum oven at 60°C for 8 h. Finally, the black ball-like ZnCo₂O₄ materials were obtained after calcination at 600°C for 4 h in air. The sample was ready for further characterization.

2. Synthesis of hydrangea-like ZnCo₂O₄

Briefly, Zn(CH₃COO)₂·2H₂O (1 mmol) and Co(CH₃COO)₂·4H₂O (2 mmol)were dissolved in 40 ml EG under magnetic stirring at room temperature. After being stirred for 30 min, the resultant solution was transferred into a Teflon lined stainless-steel autoclave with a capacity of 50 mL, and heated at 180°C for 12 h in an oven. The hydrangea-like ZnCo₂O₄ precursors were collected by centrifuging, washed with water three times and ethanol four times, and finally dried in a vacuum oven at 60°C for 12 h. Finally, the black cabbage-like ZnCo₂O₄ materials were obtained after calcination at 400°C for 2 h in air. The sample was ready for further characterization.

3. Synthesis of pineapple-like ZnCo₂O₄

Briefly, ZnCl₂ (1 mmol) and CoCl₂·6H₂O (2 mmol) were dissolved in a mixed solvent (50 ml EG and 5 ml distilled water) under magnetic stirring. Then, 30 mmol of NH₄HCO₃ and 10 mmol of urea were added to the above solution. After being stirred for 30 min, the resultant solution was transferred into a Teflon lined stainless-steel autoclave with a capacity of 100 mL, and heated at 200°C for 24 h in an oven. The pineapple-like ZnCo₂O₄ precursors were collected by centrifuging, washed with water three times and ethanol four times, and finally dried in a vacuum oven at 60°C for 8 h. Finally, the black pineapple-like ZnCo₂O₄ materials were obtained after calcination at 600°C for 4 h in air. The sample was ready for further characterization.

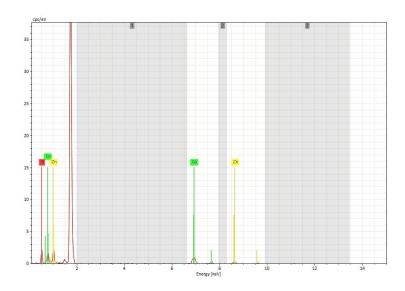
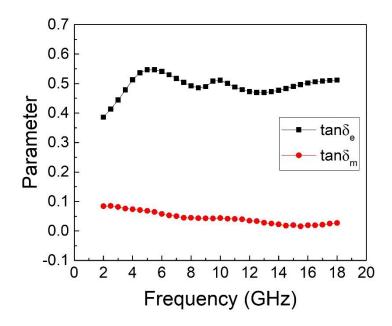



Figure S1. The EDS of cabbage-like ZnCo₂O₄ samples.

EDS quantitative analysis shows that the atomic ration of Zn, Co and O is 1:1.96:3.68, implying a certain degree of oxygen vacancy in cabbage-like ZnCo₂O₄ spinel crystal.

Figure S2. The tan δ_e and tan δ_m of as-prepared ZnCo₂O₄ samples.

Because of the calculated tan δ_e values are much higher than that of tan δ_m , as-prepared $ZnCo_2O_4$ samples can be considered as a dielectric loss-type microwave absorber.