SUPPLEMENTARY INFORMATION

Yolk-shell-structured microspheres composed of N-doped-carbon-

coated NiMoO₄ hollow nanospheres as superior performance

anode material for lithium-ion batteries

Gi Dae Park^a, Jeong Hoo Hong^a, Jung-Kul Lee^{*b} and Yun Chan Kang^{*a}

^aDepartment of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea, E-mail: <u>yckang@korea.ac.kr</u>; Fax: (+82) 2-928-3584

^bDepartment of Chemical Engineering, Konkuk University, Hwayang-dong, Gwangjin-gu,

Seoul 143-701, Republic of Korea, E-mail: jkrhee@konkuk.ac.kr

Fig. S1 Morphologies of yolk-shell-structured NiMoO₄ precursor microspheres prepared by one-pot spray pyrolysis process.

Fig. S2 XRD patterns of yolk-shell-strucutred NiMoO₄ precursor microspheres (Y-NiMoO₄), Y-NiSe₂-MoSe₂ composite via the selenization process of Y-NiMoO₄, Y-NiMoO₄-H via the oxidation of Y-NiSe₂-MoSe₂, and Y-NiMoO₄-H@C via carbon coating process of Y-NiMoO₄-H.

Fig. S3 XPS spectra of yolk-shell-structured NiSe₂-MoSe₂ composite microsphere: (a) Ni 2p,(b) Mo 3d, and (c) Se 3d.

Fig. S4 Formation mechanism of the hollow NiMoO₄ nanospheres from NiSe₂-MoSe₂ composite via nanoscale Kirkendall diffusion.

Fig. S5 TG curve of Y-NiMoO₄-H measured under an air atmosphere.

Fig. S6 (a) N₂ gas adsorption and desorption isotherms, and (b) Barrett–Joyner–Halenda (BJH) pore-size distributions of Y-NiMoO₄-H@C, Y-NiMoO₄-H, and Y-NiMoO₄-D.

Fig. S7 Morphologies of yolk-shell-structured NiO microspheres prepared by one-pot spray pyrolysis process.

Fig. S8 Morphologies of NiSe₂ microspheres prepared by spray pyrolysis and subsequent selenization process.

Fig. S9 Morphologies of MoO₃ microspheres prepared by one-pot spray pyrolysis process.

Fig. S10 Morphologies of (a,b) Y-NiMoO₄-D and (c,d) Y-NiMoO₄-D@C microspheres composed of NiMoO₄ dense nanocrystals.

Fig. S11 XRD patterns of Y-NiMoO₄-D@C and Y-NiMoO₄-D microspheres.

Fig. S12 TG curve of Y-NiMoO₄-D@C microspheres.

Fig. S13 CV curves of (a) Y-NiMoO₄-H, (b) Y-NiMoO₄-D@C, and (c) Y-NiMoO₄-D.

Fig. S14 Redox peaks and the corresponding reactions of yolk-shell-structured NiMoO₄ microspheres.

Table S1. Rate performances of various nanostructured NiMoO₄ materials with and without carbon material that were reported in previous literature as anode materials for lithium-ion batteries.

Various NiMoO4 materials	Synthesis	Electrochemical properties	Ref
Honeycomb-like NiMoO ₄ ultrathin nanosheet arrays	Electrochemical method	The discharge capacities were 870 and 370 mA h g ⁻¹ at current densities of 0.2 and 8.0 A g ⁻¹ , respectively.	[S1]
Porous NiMoO4 nanoarchitectures on 3D graphene foam	Chemical vapor deposition (CVD)	The discharge capacities were ~1100 and ~600 mA h g ⁻¹ at current densities of 0.2 and 3.2 A g ⁻¹ , respectively.	[\$2]
NiMoO4 microspheres with numerous empty nanovoids	Spray pyrolysis	The discharge capacities were 1280 and 413 mA h g ⁻¹ at current densities of 0.5 and 10.0 A g ⁻¹ , respectively.	[S3]
Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber	Hydrothermal method	The discharge capacities were 1132 and 503 mA h g ⁻¹ at current densities of 0.5 and 2.0 A g ⁻¹ , respectively.	[S4]
Hierarchical free-standing NiMoO4/reduced graphene oxide membrane	Hydrothermal method & vacuum filtration	The discharge capacities were 1116 and 690 mA h g ⁻¹ at current densities of 0.25 and 4.0 A g ⁻¹ , respectively.	[85]
Hierarchical NiMoO4 nanowire	Hydrothermal method	The discharge capacities were 1338 and 231 mA h g ⁻¹ at current densities of 0.1 and 1.0 A g ⁻¹ , respectively.	[S6]
Phase-pure β-NiMoO ₄ yolk-shell spheres	Spray pyrolysis	The discharge capacities were 1247 and 612 mA h g ⁻¹ at current densities of 0.5 and 5.0 A g ⁻¹ , respectively.	[S7]
Yolk-shell-structured microspheres composed of N-doped-carbon-coated NiMoO4 hollow nanospheres	Spray pyrolysis & Kirkendall diffusion	The discharge capacities were 1267 and 757 mA h g^{-1} at current densities of 0.5 and 10.0 A g^{-1} , respectively.	Our work

References

[S1] K. Xiao, L. Xia, G. Liu, S. Wang, L.-X. Ding, and H. Wang, *J. Mater. Chem. A*, 2015, **3**, 6128-6135.

[S2] B. Wang, S. Li, X. Wu, W. Tian, J. Liu, and M. Yu, J. Mater. Chem. A, 2015, 3, 13691-13698.

[S3] J.-S. Park, J. S. Cho, and Y. C. Kang, J. Power Sources, 2018, 379, 278-287.

[S4] X. Tian, X. Li, T. Yang, K. Wang, H. Wang, Y. Song, Z. Liu, and Q. Guo, *Appl. Surf. Sci.*, 2018, **434**, 49-56.

[S5] X. Li, J. Bai, and H. Wang, J. Solid State Electrochem. 2018, 22, 2659-2669.

[S6] J. Chen, R. Zhao, T. Wang, L. Li, and Q. Liu, *IOP Conf. Ser.: Mater. Sci. Eng.*, 2017, **274**, 012163.

[S7] J. H. Ahn, G. D. Park, Y. C. Kang, and J.-H. Lee, *Electrochim. Acta*, 2015, **174**, 102-110.