Supporting Information

Bi₂SiO₅@g-SiO₂ Upconverting Nanoparticles: A Bismuth-Driven Core-Shell Self-Assembly Mechanism

Michele Back,*[‡]^a Enrico Trave, *^a Gloria Zaccariello, ^a Davide Cristofori, ^{a,b} Patrizia Canton, ^{a,b} Alvise Benedetti^a and Pietro Riello^a

^a Deparment of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Mestre, Italy

^b Centro microscopia elettronica "Giovanni Stevanato", Deparment of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, via Torino 155, 30172 Mestre, Italy

⁺ Current Address: Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

* Email: michele.back@unive.it ; enrico.trave@unive.it

In order to evaluate how the system could be influenced by the thermal treatments, the bismuth/lanthanides concentration and the nature of the selected lanthanides, three series of samples were prepared as described below:

- In the first series, the samples were calcined at different temperature between 550°C and 750°C range, fixing the nominal fraction of the loaded lanthanide-doped Bi oxide into the MSNs pores. A nominal concentration of 14.52 wt% for the Ln-doped Bi₂O₃ (Ln=Yb,Er) was calculated in order to achieve a pore occupancy of 12.5 vol% by means of the impregnation procedure. The considered Bi:Yb:Er molar ratio was 1:0.1:0.02. The samples are labelled as SBYE_{12.5}*T*, where *T* represents the temperature (°C) of calcination (*T*=550, 600, 650, 700, 750), and are listed in Table S1.
- 2) For the second series, different degrees of MSN impregnation with Bi and Ln (Ln=Yb,Er) precursor salts were considered up to the complete volume pore occupancy (impregnation at 12.5, 25, 50 and 100 vol%). As in the case of the previous series, Bi:Yb:Er molar ratio was 1:0.1:0.02. The samples were treated fixing the calcination temperature at 750°C and labelled as SBYE_x_750, where *x*=12.5, 25, 50, 100 vol% refers to the pore occupancy. The samples of SBYE_x_750 series are listed in Table 5.1. A sample loaded at 100 vol% (SBYE₁₀₀) was maintained unheated for in situ temperature dependent SR-XRPD measurement.
- 3) In the third series, the samples were doped with ytterbium in combination with one or more other lanthanides, among Ho, Tm, and Er. For this study, the impregnation degree was kept at 100 vol% and the thermal treatment fixed at 750°C. The considered Bi:Ln molar ratio was 1:0.12. The samples are referred as SBYLn series, where Ln= H, T, E represent Ho, Tm and Er, respectively.

Sample	Ln	<i>Ln</i> -doped Bi₂O₃ concentration [wt%]	Pore occupancy [vol%]	Si:(Bi+Ln) molar ratio	Temperature [°C]	
SBYE _{12.5} _T series						
SBYE12.5_550					550	
SBYE12.5_600					600	
SBYE12.5_650	Er	14.52	12.5	22.85:1	650	
SBYE _{12.5} _700					700	
SBYE _{12.5} _750					750	
SBYE _x _750 series						
SBYE12.5_750	_	14.52	12.5	22.85:1		
SBYE ₂₅ _750		25.36	25	11.43:1	750	
SBYE50_750	Er	40.46	50	5.71:1	750	
SBYE100_750		57.61	100	2.86:1		
SBY <i>Ln</i> series						
SBYE	Er					
SBYT	Tm					
SBYH	Но					
SBYET1	Er+Tm	57.61	100	2.86:1	750	
SBYET2	Er+Tm					
SBYHT	Ho+Tm					
SBYEHT	Er+Ho+Tm					

Table S1 Molar ratios and calcination temperature of the synthesized samples belonging to the different Yb,*Ln* codoped series, labeled as $SBYE_{12.5}T$, $SBYE_x_750$ and SBYLn series; nominal pore occupancy refers to the fraction of MSN pore volume impregnated by salt precursors.

Figure S1. N₂ adsorption/desorption isothermal curves (a) and pore size distribution curve (b) of the bare MSNs.

Figure S2. (a) N₂ adsorption-desorption isotherms and (b) BJH pore size distribution of the SBYE_{12.5}_T samples.

Figure S3 SAXS measurements for the series $SBYE_{12.5}$ *T* of samples impregnated at the lowest loading content (12.5%) and annealed between 550 and 750°C.

Figure S4 Comparison between the samples annealed at 700 and 750 °C with the Bi₂SiO₅ phase patterns (triangles).

Figure S5 Weight percentages of the phases from Rietveld refinement *versus* bismuth precursor loading content calculated as percentages of volume occupied by the salt on the total MSN volume accessible.

Comple	non	ninal	experimental	
Sample	SiO ₂ (wt%)	Bi₂O₃ (wt%)	SiO ₂ (wt%)	Bi ₂ O ₃ (wt%)
SBYE _{12.5}	85.48	14.52	83.03	16.97
SBYE ₂₅	74.64	25.36	72.15	27.85
SBYE ₅₀	59.34	40.46	62.64	37.36
SBYE ₁₀₀	42.39	58.61	43.03	56.97

Table S2 Comparison of the nominal and experimental (from Rietveld refinement) weight percentages of SiO_2 and Bi_2O_3 of the samples.

Table S3 BET specific surface area S.A._{BET} and total pore volume V_p of the MSN and SBYE_x samples.

Sample	S.A. _{BET} (m ² g ⁻¹)	<i>V</i> _p (cm ³ g ⁻¹)
MSN	1050	1.2
SBYE _{12.5}	135	0.26
SBYE ₂₅	109	0.21
SBYE ₅₀	18	0.07
SBYE ₁₀₀	14	0.06

Figure S6 Magnification of the (311) reflection peak of SR-XRPD patterns (λ =1.03333 Å) of SBYE₁₀₀ sample.

Figure S7 HR-TEM, FFT and relative plane distances with family plane assignation of the core of different SBYE₁₀₀_750 nanoparticles.

Figure S8 Comparison of the green and red UCPL emission shapes at the lowest and highest loading (SBYE_{12.5}_750 and SBYE₁₀₀_750 respectively).

Figure S9 UCPL integrated area of the Er³⁺ emission (points) and linear fit (dotted line) as a function of the pore occupancy in the MSNs.

Sample	CIE(<i>x,y</i>)
SBYE	(0.31,0.68)
SBYH	(0.65,0.34)
SBYT	(0.25,0.13)
SBYET1	(0.26,0.26)
SBYET2	(0.27,0.43)
SBYTH	(0.39,0.20)
SBYETH	(0.41,0.32)

Table S4 CIE Colour Coordinates (*x*,*y*) for the samples under 980 nm excitation.