Supplementary Material

Photo-mediated co-loading of highly dispersed MnO_x -Pt on g-C₃N₄ boosts the ambient catalytic oxidation of formaldehyde

Lianjie Duan^{a,b,#}, Huan Liu ^{a,b,#}, Muhammad Yaseen^c, Liyi Shi^a, Haocheng Wu^a,

Jiangping Zhang^a, Dongqi Yu^b and Lei Huang^a*

^a Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, P. R. China.

^b School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China.

^c Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, KP, Pakistan.

These authors contributed equally to this work

*To whom correspondence should be addressed: Tel: +86-21-66134726; E-mail: leihuang@shu.edu.cn (L. Huang)

Fig. S1 Schematic representation of experimental setup for catalytic oxidation of HCHO.

Fig. S2 Field-emission TEM images of $g-C_3N_4$.

Fig. S3 Field-emission TEM and HRTEM images of MnO_x /g-C₃N₄.

Fig. S4 XPS spectra of survey for various catalysts.

Fig. S. XPS spectra of Mn 2p (a) and Pt 4f (b) of various catalysts.

Fig. S6 N_2 adsorption-desorption isotherms of g-C₃N₄, Pt/g-C₃N₄, MnOx-Pt/g-C₃N₄ and MnO_x/g-C₃N₄.

Fig. S7 (a) is UV-vis diffusion absorption spectra of $g-C_3N_4$, $Pt/g-C_3N_4$, $MnO_x-Pt/g-C_3N_4$ and $MnO_x/g-C_3N_4$. (b) is the plots of the $(ahv)^2$ versus photon energy (hv).

Fig. S8 HCHO conversion over MnO_x-Pt/g-C₃N₄ and (Im)MnO_x-Pt/g-C₃N₄.