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1. Alumina Nanoparticle (NP) Design and Force Fields 

A unit cell of α-Al2O3 (110) was considered to begin designing the atomistic model of the NP 

(leftmost picture of Fig. S1). This unit cell is first replicated along all Cartesian axes, in order to build 

a fully periodic brick of 10 x 10 x 5 nm3 (see the middle picture in Fig. S1). Then, a spherical particle 

is obtained by retaining only atoms within a fixed distance from the brick center (radius), as shown 

in the rightmost picture of Fig. S1. Two separate NPs are designed by the previous procedure, one 
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with a radius of 2 nm, and the other one with a 0.85 nm radius.  Because we aim to study the alumina 

nanoparticle in hydrated environments, the α-Al2O3 surfaces have been modeled using the 

methodology described below. Note that we focus on alumina because of the broad range of 

technological applications where it is used. The chemical resistance and porosity of alumina surfaces 

enable superior performance when it is used as a catalyst or catalyst supportS1. Moreover, alumina 

is largely utilized as a dielectric in microelectronicsS2, and because of its relatively high thermal 

conductivity, α-Al2O3 is one of the few ceramic materials to be largely employed in thermal 

nanofluidsS3,S4. 

Numerous investigations have demonstrated the presence of hydroxylation phenomena occurring 

in the surface chemistry of aluminaS5-S7. For example, Eng et al. experimentally studied the surface 

properties of the hydrated α-Al2O3 (0001) surface and showed an oxygen-terminated surface with 

the formation of some ordered water layers at the solid-liquid interfaceS8. Therefore, the α-Al2O3 

nanoparticles, previously obtained, have been functionalized by adding OH terminal groups. 

Specifically, the surface aluminium atoms with less than 6 bonds are eliminated from the structure, 

and the hydrogen atoms are bonded to some surface oxygens, fixing the O-H bond to 0.96 nm and 

the Al-O-H angle to 168° with a random azimuth angle. Because the extent of hydroxylation is found 

to decrease with nanoparticle sizeS9, the number of OH groups has been tuned from ~ 2.6 OH/nm2 

to ~ 7.6 OH/nm2, where the solvent accessible surface areaS10 has been considered in the 

calculation.   

 
Fig. S1: Preparation of the MD geometry of the crystal alumina NP. From left to right: unit cell of alumina (α-

Al2O3), alumina crystal brick (10 x 10 x 5 nm3), alumina NP having a 4 nm diameter including surface 

hydroxylation. Color code: aluminium atoms are depicted in gray, oxygen atoms are depicted in red, and 

hydrogen atoms are depicted in white.  

The atomistic structure of alumina is described by implementing the CLAYFF force field developed 

by Cygan et al. S11. All the bonds and angles within the NP core are modeled with harmonic potentials 

whose parameters can be found in referenceS11. Further, Lennard-Jones (LJ) and Coulomb (C) 

interaction potentials were imposed to model the dispersion and electrostatic interactions, 

respectively. Specifically,  

UNON−BOND =  ULJ +  UC =  4εij [(
σij

rij
)

12

− (
σij

rij
)

6

] +  
1

4πϵ0

qiqj

rij
, 

(1) 

where qi and qj are the partial charges on atoms i and j, respectively, rij is the distance between 

atoms i and j, and 𝜖0 is the permittivity of free space. Partial charges were only assigned to the 

surface atoms belonging to the Al-O-H groups, whereas zero charges (i.e., qi = 0) were imposed on 
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the bulk atoms. Both the partial charges and the LJ parameters of each atom in the NP, including 

the OH termination, are consistent with the CLAYFF force fieldS11, and are reported in Table S1.  

In order to evaluate the PMF between two charged alumina NPs, the charge distribution of the 

smallest NP (R = 0.85 nm) was altered from the classical CLAYFF force field, which assumes a net 

surface charge equal to zero. In particular, the positive charges of some surface aluminium atoms 

were randomly turned off, resulting in a globally negative NP, with a surface charge density, σq of -

0.346 C/m2. A more rigorous procedure, including the use of a reactive force field (ReaxFF)S12 could 

have also been implemented to tune σq of the NP in response to changes in the solution pH. 

However, the simpler strategy adopted here was deemed adequate in order to demonstrate the 

sensitivity of the PMF to the NP surface chemical and physical properties.  

Atom σ [nm] ε [kJ/mol] q [e] 

Bulk Al 0.427 0.5566 · 10-5 0 

Bulk O 0.3166 0.65020 0 

Hydroxyl O 0.3166 0.65020 -0.95 

Hydroxyl H 0.0 0.0 0.425 

Surface Al (1 bonded OH) 0.427 0.5566 · 10-5 0.525 

Surface Al (2 bonded OH) 0.427 0.5566 · 10-5 1.05 

Surface Al (1 bonded OH) 0.427 0.5566 · 10-5 1.575 

Table S1: Lennard-Jones parameters and partial charge distribution on α-Al2O3 
S11. According to the number 

of hydroxyl groups bonded to one surface aluminium atom, the Al partial charge is set to qAl= +0.525e for 

one OH group, qAl = +1.05e for two OH groups, and qAl = +1.575e for three OH groups. 

1.1 Convergence of MD Self-Assembly Simulations of Surfactants on Alumina NP 

To validate the convergence of sodium dodecyl sulfate (SDS) and dodecyl trimethyl ammonium 

bromide (DTAB) self-assembly simulations on alumina bare nanoparticles (BNP), we studied the 

time evolution of the radial distribution function, g(r), of these surfactants wrapping the BNP 

surface. Specifically, we computed the g(r) of SDS and DTAB residues, using the center of mass 

positions of both surfactant heads and tails, around the center of mass of the alumina BNP, over 

various time intervals, during the first 50 ns of MD simulations. Fig. S2 (a) and (b) show the g(r)s of 

SDS and DTAB residues respectively, after 1 ns, 5 ns, 20 ns, 30 ns, 45 ns and 50 ns. The figures clearly 

demonstrate that the rearrangement of surfactants on alumina surface tends to stabilize after 20 

ns, thereby confirming that the selected timescale is adequate to describe the rearrangement of 

surfactants on the alumina BNP. Moreover, the g(r)s in Fig. S2 (a) and (b) highlight the conformation 

of surfactants adsorbed on the alumina NP surface: the hydrophobic tails of both SDS and DTAB 

tend to distribute closely to the alumina NP, showing peaks at D = 2.24 nm and D = 2.25 nm 

respectively, while the charged heads project outwards from the alumina surface due to their 

tendency to be solvated by water (see the second peaks in Fig. S2 (a) and (b)).  
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Fig. S2: (a-b) Time evolution of the radial distribution functions (g(r)s) of SDS (a) and DTAB (b) residues around 

the center of mass (com) of the alumina bare nanoparticle (BNP). (c-d) The SDS and DTAB g(r)s (red curves) 

are compared at t = 50 ns with the radial distribution functions obtained by considering separately the com 

positions of the tails and the heads of the SDS (c) and DTAB (d) molecules around the com of BNP. Note that 

all the computed g(r)s are normalized with respect to the total number of residues, namely tails and heads, 

present in the system. 

In Fig. S2 (c) and (d), we demonstrate that the radial distribution functions, (g(r)s), corresponding 

to the total SDS and DTAB residues (red curves in Fig. S2 (c) and (d)) can be derived by considering 

separately the radial distribution of the com positions of surfactant heads (𝑔ℎ𝑒𝑎𝑑(𝑟))  and tails 

(𝑔𝑡𝑎𝑖𝑙(𝑟)), namely:  𝑔(𝑟) =  𝑔ℎ𝑒𝑎𝑑(𝑟) + 𝑔𝑡𝑎𝑖𝑙(𝑟). Note that all the computed g(r)s are normalized 

over the total number of surfactant residues, both heads and tails wrapping each CNPs.  

Finally, the radial distribution functions of SDS and DTAB residues around the bare nanoparticles 

(see Figure 1(d) in the main text) were also used to estimate the radius, 𝑅𝐶𝑁𝑃 , of SDS and DTAB 

CNPs. Precisely, RCNP = ∑(g(r) ∙ r) ∑ g(r) +  ra⁄ , where ra = 0.05 nm is mean atomic radius. 

Through this equation, we obtained  RSDS−CNP = 2.41 nm and RDTAB−CNP = 2.45 nm.  

2. Potential of Mean Force (PMF) Calculations 

Fig. S3 illustrates the results of the PMF between uncharged BNPs in vacuum. The mean forces, 

plotted in Fig. S3 (a) as a function of the center of mass distance, D, show the short-range behavior 
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of the interactions. This result allowed us to detect the interaction potential range and to select the 

most significant D values, namely, from 3.9 nm to 5 nm, used in the PMF simulations. The PMF in 

vacuum was evaluated for frozen and vibrating BNPs, and the two cases are shown in Fig. S3 (b) with 

blue and green symbols, respectively. An examination of Fig. S3 (b) shows that the largest deviation 

between the two curves, ΔPMF = 7.5 kJ/mol, occurs at D = 4.1 nm, and is around 18% of the PMF. 

This small difference reinforces the use of frozen NPs to fix the center of mass distance during the 

course of the simulation.  

 

Fig. S3: (a) Mean forces and potential of mean force (PMF) obtained from MD simulations between two 

frozen BNPs in vacuum as a function of the center of mass distance, D. Note that –Forces (D), instead of 

+Forces (D), are plotted to improve the clarity of the plot. (b) Comparison of the PMFs for frozen and vibrating 

BNPs. 

A sensitivity analysis was carried out to qualitatively investigate the effects of surface charges and 

salt concentration on the PMF. To evaluate the PMF between two charged alumina NPs, the 

simulation protocol of 'pulling' was adopted. Specifically, two NPs are placed in a box (22 nm x 8 nm 

x 8 nm) made of SPC/E water moleculesS13. It is worth noting that 44 molecules of water were 

replaced by an equal number of positive counterions (Na+1) to ensure electroneutrality of the 

simulated system. A similar approach was followed when a salt concentration of [NaCl] = 0.01 M 

was added to the bulk aqueous solution. After the energy minimization, the entire system was 

equilibrated at T = 300 K in the Canonical ensemble (NVT), by applying the Nosé-Hoover 

thermostatS14. The second equilibration step was carried out in the isothermal-isobaric ensemble 

(NPT, T = 300 K and 1 bar), using the Parrinello-Rahman barostatS15. First, the distance between the 

NPs centers of mass was set to 2 nm. Then, by restraining one NP (reference group) while pulling 

the second one (pull group) along a reaction coordinate, D, a series of windows, corresponding to 

different inter-NP separation distances, are generated as shown in Fig. S4 (a). Specifically, the pull 

velocity is kept constant (vpull = 0.01 nm/ps) to allow a linear uniform motion of the pulled NP. From 

the resulting trajectories, the snapshots generated from independent 2 ns MD simulations have an 

inter-window spacing equal to 0.25 nm, which is a trade-off distance ensuring good precision and 

affordable processing time. During the simulations, the center of mass positions of the NPs are 

maintained fixed by the SHAKE algorithm implemented in GROMACS. Before running the actual MD 

simulations, each window is briefly equilibrated in the NPT ensemble for 200 ps. The PMF is finally 
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calculated by numerically integrating the inter-NP forces obtained in each space-window, as 

reported in the main text. 

The results of the simulated PMF are shown by the red dots in Fig. S4 (b). The MD simulations data 

were fitted by Eq. 2 (Case 1) and the fitting function is represented by the red solid curve. Unlike 

the neutral NPs, the PMF between two charged NPs exhibits a long-range repulsive potential, which 

extends from D = 2.24 nm to D = 8 nm, with a maximum of around 98 kJ/mol at D = 2.24 nm (Fig. S4 

(b)). When the NPs approach each other closer than 2.24 nm, the repulsive interaction is slightly 

weakened by the short-range dispersion potential (PMF = 68 kJ/mol at D = 1.98 nm).  

 
Fig. S4: (a) Pulling procedure to generate the simulated configurations for two alumina NPs of 0.85nm radius, 

located at different center of mass distances (D). (b) Simulated PMF corresponding to two charged NPs in 

aqueous solution (red dots). The fitting of the PMF data corresponds to the solid red line.  

In order to fit the primary features of the PMF vs. D curve, we used the following empirical 

expression:  

PMF(D) = a (
1

(D − x0)
)

n

− b (
1

(D − x0)
)

m

+ ∑ ci · exp (−
(D − x1)

λi
)

2

i=1

 (2) 

The various terms in Eq. 2 aim to reproduce both the repulsive and the attractive interactions as a 

function of D when two NPs approach each other. Specifically, the first term describes the sharp 

repulsion due to excluded-volume effects; the second term reflects the attractive interactions, and 

the last two terms (i = 1 and 2) reflect the repulsive effects of entropic nature. The ten parameters 

(a, n, b, m, c1, c2, λ1, λ2, x0, x1) in Eq. 2 were obtained using a least-square fitting approach, and they 

are reported in Table S2.  

 𝐚 [
𝐤𝐉𝐧𝐦𝐧

𝐦𝐨𝐥
] n 𝐛 [

𝐤𝐉𝐧𝐦𝐦

𝐦𝐨𝐥
] m 𝐜𝟏 [

𝐤𝐉

𝐦𝐨𝐥
] 𝐜𝟐 [

𝐤𝐉

𝐦𝐨𝐥
] 𝛌𝟏[𝐧𝐦] 𝛌𝟐[𝐧𝐦] 𝐱𝟎[𝐧𝐦] 𝐱𝟏[𝐧𝐦] 
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Case1 1.5·107 20.0 1.55·105 10 23.6 191 1.606 1.3 0.0 1.7 

Case2 1.0774 7 1.2134 5 422.28 0.0 0.3 0.0 3.34 3.9 

Case3 0.0 0.0 0.0 0.0 235.3 0.0 0.7133 0.0 0.0 4.9 

Case4 0.6480 7 13.25 1.0 326.7 0.0 0.9 0.0 4.78 4.7 

Table S2: Compilation of the ten fitted parameters in Eq. 2. Note that Case 1, Case 2, Case 3, and Case 4 

correspond to charged BNPs of R = 0.85 nm and [NaCl] = 0.01 M, neutral BNPs of R = 2 nm, DTAB CNPs of R 

= 2.45 nm, and SDS CNPs of R = 2.41 nm. 

2.1 Convergence of the PMF Calculation for DTAB Coated NPs 

The Potential of Mean Force (PMF) of the Coated NPs (CNPs) was carried out at various center of 

mass separation distances (D), from 4.9 nm to 8 nm, thereby creating 31 configurations. In each 

configuration, the PMF was calculated after having obtained 10-ns long trajectories, including 4 ns 

of equilibration and 6 ns of actual production run. The resulting forces are then collected in the last 

2 ns of the trajectories. We note that during the calculation of the PMF, we froze only the core of 

the alumina nanoparticles (NPs), while allowing the surfactant anions to randomly move around the 

bare NPs. This calculation has allowed us to explore multiple configurations and mutual orientations 

of the surfactant anions, during the complete molecular dynamics (MD) trajectory used for the PMF 

analysis. As the Fig. S5 shows, the mutual orientation of the coated NPs, in the z direction, does not 

remain fixed even within 1 ns.  

 

Fig. S5: Molecular Dynamics snapshots showing the mutual orientation of two DTAB coated NPs after 5 ns 
(left-hand side) and 6 ns (right-hand side) of production run. Because of the random motion of the 
surfactants, the CNPs continuously change their configuration during the simulation time, thereby exhibiting 
several mutual orientations. 

Note that during the 6 ns of production run, all the PMF windows corresponding to the 31 CNP 

separation distances preserve the configurations with the surfactants wrapping the NPs and 

completely adsorbed to the bare alumina surface (see Figure 2 (b) and (c) of the main manuscript). 

However, at very short separation distances, the constrained and the energy unfavourable positions 

of the CNPs (see the PMF profiles in Figure 2 of the main manuscript) may influence the 

rearrangement of surfactants after 6 ns of production run. Such possible reorganization of 
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surfactant molecules after 6 ns has not been considered for the PMF calculation because it may not 

be representative of the actual behaviour of CNPs in a real nano-suspension.  

 

Fig. S6: (a) Representative PMF simulation snapshots of two DTAB CNPs in the xz plane obtained for D = 5.8 

nm. (b) Total Lennard-Jones (LJ) and Coulomb interactions corresponding to the whole solvated configuration 

shown in (a). Note that both short and long range interactions are included in the calculation of LJ and 

Coulomb energies.  (c) Lennard-Jones (LJ) and Coulomb (Coul) short range (SR) interactions between the 

DTAB CNPs shown in (a). (d) Lennard-Jones (LJ) and Coulomb (Coul) short range (SR) interactions between 

one single DTAB CNP and the surrounding water molecules. 

In order to check the convergence of MD simulations within the 6 ns of production run, we 

calculated, according to the Eq. 1, the Lennard-Jones (LJ) and Coulomb interaction energies during 

the last 1 ns of the MD production run. As an exemplificative study case, we considered the 

configuration of two solvated DTAB CNPs when their separation distance, D, is 5.8 nm (see the 

snapshot in Fig. S6 (a)). In Fig. S6 (b), the total Lennard-Jones and Coulomb interactions are shown. 

Here, both short and long-range interactions are considered. Moreover, all the contributions coming 

from water molecules, surfactants, ions and alumina atoms are included in the calculation of 

Lennard-Jones and Coulomb energies. In Fig. S6 (c), we restricted the calculation to the short-range 

(SR) LJ and Coulomb energies between the DTAB CNPs shown in Fig. S6 (a), while in Fig. S6 (d), the 

previous mentioned non bond interactions are calculated between one single DTAB CNP and the 

water molecules (SOL). All the energies computed and shown in Fig. S6 highlight the steady-state 

behaviour of the MD simulations, thereby confirming that the chosen time scale for the PMF 

calculation is reasonable. Note that in the current analysis, we concentrated on a few pair-wise 

potential combinations, namely between CNPs and water molecules, however, the effective mean 
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force utilized to compute the PMF is the result of all possible coupled effects, including the entropic 

contribution between each single molecule in the system.  

3. Classical DLVO and Extended DLVO Theories 

The classical DLVO theory, which currently represents the cornerstone underlying our 

understanding of the interactions between colloidal particles, including their aggregation behavior, 

was developed by Derjaguin, Landau, Vervey, and Overbeek (DLVO)S18,S19. According to the DLVO 

theory, the inter-particle energy between suspended NPs depends on the additive contributions of 

both van der Waals and electrostatic interactions, which depend on the interparticle distance. The 

classical DLVO parameters corresponding to the study cases discussed in the main text are reported 

in Table S3.  

NP 𝐑 [𝐧𝐦] 𝛔𝐪  [
𝐂

𝐦𝟐
] [NaCl] [M] 𝛒𝐛𝐮𝐥𝐤  [

#

𝐦𝟑
] 𝛒𝐜𝐢 [

#

𝐦𝟑
] 𝛌𝐝[𝐧𝐦] 𝛙𝟎[𝐕] 

Charged BNP 0.85 -0.346 0.01 6.022·1024 3.14·1025 1.606 -0.211 

Neutral BNP 2 0.0 0.0 0.0 0.0 0.0 0.0 

SDS CNP 2.41 -0.184 0.0 0.0 5.83·1025 1.386 -0.120 

DTAB CNP 2.45 +0.212 0.0 0.0 6.95·1025 1.269 0.122 

Table S3: Input parameters for the classical DLVO theory for the study cases discussed in the main text. R is 

NP radius, σq is the surface charge density, [NaCl] is the salt concentration, ρbulk is the number density of 

the salt in the bulk solution, ρci is the number density of counterions, λd is the Debye-Hückel screening length 

and  ψ0 the surface electrical potential. 

In Fig. S7, a comparison of the simulated PMF for two charged BNPs (red dots) with some of the 

well-known formulations of the classical DLVO potentials (coloured continuum curves) is reported. 

Specifically, we obtained the DLVO interaction potentials as a summation of the nonretarded van 

der Waals contribution (Uvdw(D) reported in the Eq. 2 of the main text) and the Electric Double Layer 

(UEDL(D)) interactions. Four different formulations of UEDL(D) has been utilized: (i) the Linearized 

Poisson Boltzmann (DLVO-LPB, blue line in Fig. S7)S20, (ii) the Non-Linearized Poisson Boltzmann 

(DLVO-NLPB, orange line in Fig. S7)S21, (iii) the Hogg-Healy-Fuersteneau (DLVO-HHF, orange line in 

Fig. S7)S22,  and (iv) the modified Hogg-Healy-Fuersteneau (DLVO-HHF, yellow line in Fig. S7)S21. 
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Fig. S7: Simulated PMF corresponding to two charged NPs in aqueous solution (red dots). The classical DLVO 

theory prediction (obtained as DLVO = Uvdw(D) + UEDL(D) is computed following four different formulations of 

UEDL(D): the Linearized Poisson Boltzmann (DLVO-LPB in Eq. 3), the Non Linearized Poisson Boltzmann (DLVO-

NLPB in Eq. 4), the Hogg-Healy-Fuersteneau (DLVO-HHF in Eq. 5), the modified Hogg-Healy-Fuersteneau 

(DLVO-modified HHF in Eq. 6). 

The following equations (3-6) correspond to the previous mentioned DLVO formulations (i-iv), 

respectively: 

DLVO − LPB(D) = Uvdw(D) + 2πRε0εrψ0
2e−κ(D−2R), (3) 

DLVO − NLPB(D) = Uvdw(D) + 4πε0εrY(D)2 (
kBT

e
)

2 R2

D
e−κ(D−2R), (4) 

DLVO − HHF(D) = Uvdw(D) + πRε0εrψ0
2log (

1 + e−κ(D−2R)

1 − e−κ(D−2R)
) + log (1 + e−κ(D−2R)), (5) 

DLVO − modifiedHHF(D) = Uvdw(D) + 4πε0εrY(D)2 (
kBT

e
)

2 R2

D
log (1 + e−κ(D−2R)), (6) 

where kB is the Boltzmann constant, T is the absolute temperature, ε0 and εr are the dielectric 

permittivity of vacuum and water, respectively, κ is the inverse of the Debye-Hückel screening 

length (κ = 1 λd⁄ = √(∑ ρi(ze)2) (ε0εrkBT)⁄ ), and e is the electronic charge. The function Y in Eq. 

4 and Eq. 6 is given byS21: 

Y(D) =  
4exp (−κ(D − 2R) 2⁄ )

tanh [exp (−κ(D − 2R) 2⁄ ) ∙ tanh (
zeψ0

4kBT
)]

, (7) 

where ψ0 is the surface potential and is obtained after solving the Grahame equationS20. All the input 

parameters used in the Eq. (3-6) are provided in Table S3. Note that Eqs. 3 and 5 are obtained under 

the approximation of low surface particle potential, 𝜓0, whereas Eqs. 4 and 6 are expected to be 

accurate from moderate to high surface potential, and for this reason they are more suitable to 

describe the interactions of the highly charged BNP here investigated. Specifically, Eq. 6 is derived 
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for modest to large κR and for all separation κ(D-2R), therefore it is the classical DLVO formulation 

closest to the analysed case. As Fig. S7 highlights, for D > 4 nm, the simulated PMF agrees quite well 

with the classical DLVO theories (Eqs. 3-6). However, while the DLVO correctly describes the 

interaction potential in the far-field continuum aqueous media region, it strongly deviates from the 

simulated PMF for 2 nm < D < 4 nm. As already pointed out in the main text, one of the reasons for 

the mismatch between the DLVO theory and the MD simulations is related to the ion-ion 

correlations effects, the modification of the dielectric constant, and the hydration repulsion acting 

at the solid-liquid interfaceS16,S17. Moreover, in the short-range interaction regime, the linear 

superposition approximation utilized to derive the DLVO fail. At D = 2.24 nm, the simulated PMF 

exceeds the DLVO theory prediction by around 80 kJ/mol (see Fig. S7). 

A large body of literature shows that the classical DLVO theory reveals a pronounced inaccuracy to 

describe highly charged and coated particle interactions in the short-rang NP separation regime. 

Hereafter, we present two examples of modified classical DLVO theory. Specifically, we apply the 

charge renormalization theory and the polymer grafted theory to evaluate the interaction energy 

between highly charged and coated NPs respectively.  

3.1 Beyond Classical DLVO: The Charge Renormalization Theory 

In the field of highly charged colloidal suspensions, the concept of effective or renormalized surface 

charge plays a significant role to describe the inter-particle interaction potentialsS23,S24. In such 

suspensions, the strong electrostatic forces induced by the charged colloids bring to the formation 

of a condensed shell of counterions in the vicinity of NP surface, while a diffuse layer of co-ions and 

counterions is forming the far-field aqueous media region. The basic idea of the charge 

renormalization theory is to consider the structural NP and its condensed counterions as a whole 

which carries an effective charge, Zeff, much weaker than the structural one, Zstr. Consequently, the 

non-linear behaviour induced by the charged NP with Zstr can be embodied in a linear screening 

model computed by utilizing the renormalized effective charge  Zeff. In order to compare the 

simulated PMF with a predictive theoretical potential based on the charge renormalization theory, 

we restricted the analysis to the case of very dilute NP suspensionsS23. In fact, several studies, by 

applying the Wigner Seitz (WS) cell model, have extended the renormalization charge theory to the 

case of very concentrated suspensionsS24,S25 . However, the NP concentrations, Φ, examined in this 

paper (0.00125 < Φ < 0.05) fall down to the case of dilute suspensions (Radius of the WS cell, 𝑅𝑊𝐶 =

𝑅(
4

3
𝜋𝑅3Φ)−1/3 → ∞)S25. In Fig. S8, the simulated PMF (red dots) are compared with the DLVO 

interaction potentials (coloured continuum curves) calculated at constant NP effective charges, Zeff, 

after having considered the Linearized Poisson Boltzmann (LPB) theory for the EDL interaction, 

namelyS23: 

DLVO = Uvdw(D) +  
Zeff

2(kBT)LB(exp (κR))2

(1 +  κR)2

e−κ(D−2R)

D
, (8) 

where 𝐿𝐵 =  𝑒2/(4𝜋ε0εrkBT) is the Bjerrum length, κ the inverse of the Debye-Hückel screening 

length, R the NP radius. A sensitivity analysis was carried out by tuning  the effective charge, Zeff, 
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from the actual structural surface charge  Zstr = 22 e to Zeff = 3.76 e corresponding to the theoretical 

value in the limit of low salinity, κ R << 1, namelyS23: 

zZeffLB

R
= 2log (

1

κR
) + 2log (log (

1

κR
)) + 4log (2), (9) 

where z is the ion valence. As Fig. S8 shows, the interaction potentials evaluated according to the 

renormalization of charge theory agree quite well in the regime of large separation between the 

two charged NPs, however, they deviate in the short range of interactions, where effects associated 

with solvation forces and nonzero counterion/co-ion sizes are important. Although an adjustable  

Zeff could be selected to fit the MD results for D > 2.5 nm, the resulting theoretical energy barrier 

would largely overestimate the simulated PMF for D < 2.5 nm. 

Note that Monte Carlo simulations and Molecular Dynamics have been relatively successful to 

evaluate the effective surface charge Zeff
S25,S27, however, our attempt in this study was to compare 

the simulated PMF with a self-consist theoretical approach able to calculate analytically the effective 

renormalized charge Zeff. 

 

 

Fig. S8: Simulated PMF corresponding to two charged NPs in aqueous solution (red dots). The coloured 

continuum lines correspond to the DLVO interaction potential at constant NP surface charge after 

considering the Linearized Poisson Boltzmann (LPB) theory with renormalized effective surface charges, Zeff, 

in the limit of very dilute NP suspensions (Eq. 8). For comparison, the DLVO interaction potential is also 

computed utilizing the LPB approximation with the structural surface charge, Zstr, in the limit of dilute 

suspensions. 
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3.2 Extended DLVO for Coated NP Interactions 

Here, we present an example of the extended DLVO theory as implemented for DTAB CNPs. 

Specifically, we considered the following semi-empirical equation, widely used for polymer-grafted 

surfaces, which aims to describe the entropic repulsive contributionS28.  

UexDLVO(D) = 32RL2Γ
3
2kBT · exp (−

(D − 2R)

L
) (10) 

where R = 2.45 nm is the radius of the CNP, L = 0.89 nm is the protrusion length of the surfactant 

tails, and Γ = 1.99 nm-2 is the number of surfactant chains (tails) per unit area. Accordingly, the final 

continuum theory used to describe the interaction potential between two NPs is given by: 

UCNP(D) =  Uvdw(D) + UEDL(D) + UexDLVO(D), (11) 

 

where Uvdw(D) and UEDL(D) are detailed in the Methods section of the main text (Eqs. 2 and 4 in the 

main text), with the corresponding parameters reported in Table S3, and UexDLVO(D) is calculated 

using Eq. 10. The resulting potential profile (𝑈𝐶𝑁𝑃(𝐷)) is shown by the black dotted curve in Fig. S9, 

and clearly shows the limitation of the extended DLVO theory when compared to the simulated PMF 

vs. D profile (the yellow dots and fitted yellow curve in Fig. S9). For D > 5.4 nm, the extended DLVO 

profile is closer to the simulated PMF than is the classical DLVO theory (the black solid curve in Fig. 

S9). However, 𝑈𝐶𝑁𝑃(𝐷) strongly overestimates the PMF values for D < 5.4 nm. Therefore, from the 

above analysis, we conclude that any combination of continuum models would fail to adequately 

incorporate the coupled and discrete effects occurring at the nanoscale and affecting the actual 

interactions between NPs when they are closer than 1 nm. 

In order to utilize our computational resources efficiently, the PMF in the region D < 4.9 nm was not 

simulated. In fact, the aggregation kinetics of the NPs is primarily governed by the primary free 

energy barrier which has been considered in case of DTAB CNPs as the maximum value of the PMF 

corresponding to the smallest NP separation distance. Such value of PMF, located at Db = 4.9 nm, 

plays a dominant role in modulating the rate of aggregation of the CNPs. Because the primary free 

energy barrier is quite high, the probability that two CNPs overcome it, and aggregate as a result, is 

extremely low. Therefore, for D values smaller than Db, the PMF should not affect the kinetics of NP 

aggregation, and for this reason, was not computed. Nevertheless, the trend exhibited by the PMF 

for D < 4.9 nm can be deduced from a previous study by Xu et al., who computed the PMF of SDS 

coated SWCNTsS29. Further, the different slopes of the PMF curves corresponding to the SDS and 

DTAB CNPs when D < 5.2 nm reflect the different magnitudes of the forces acting between the 

coated NPs.  
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Fig. S9: PMF of DTAB CNPs vs. D and comparison with the DLVO theory: Simulated PMF between two 

interacting DTAB CNPs (yellow dots). The fitting curve to the simulated PMF data is obtained using Eq. 2, and 

it is shown by the solid yellow curve. The interaction potential energies predicted by the classical (the solid 

black curve) and the extended DLVO theory (the dashed black curve) are shown for comparison. 

In the previous examples, we have shown that even the most elegant adaptations of the classical 

DLVO fail to describe the NP-NP interaction in the short-range regime.  Consequently, mean-field 

theories like the Poisson-Boltzmann model which consider charged species like counterions to be 

point-sized are unable to properly describe the electric double layer effects. Similarly, the 

assumptions of uniform and continuous media, underlying the DLVO theory, break down in the 

proximity of the NP surface, where an interfacial layer of highly structured water occupies a region 

whose thickness is not negligible relative to the NP dimensions. Moreover, coupled effects may arise 

in such nanoscopic systems, and the hypothesis that the inter-particle potential is a superposition 

of independent interactions could be violated. 

4. Stochastic Dynamics Simulations 

4.1.  Convergence of the Simulations 

The kinetics of NP aggregation was simulated by implementing the Langevin equationS30:  

mi

𝑑2𝐫i

dt2
=  −miγi

d𝐫i

dt
+  𝐅i(𝐫i(t)) +  √2miγikBT 𝐫𝐢

𝐆, (12) 

where mi is the mass of NPi, ri is its position at time t, kB is the Boltzmann constant, T is the absolute 

temperature, ri
G is the Gaussian distributed noise, and γi is the friction coefficient associated with 

the stochastic collisions of the nanoparticle, NPi, with the molecules constituting the solvent. It is 

worth noting that in the limit of high friction, i.e. in over-damped systems where the inertia term is 

negligible, Eq. 12 reduces to the equation of Brownian dynamics. For the sake of completeness in 

this study we solved the complete Langevin equation, avoiding any assumption about the inertia 

effects. To derive the force Fi associated with particle i using Eq. 12, we developed an inter-particle 
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potential based on the previously discussed atomistic PMFs. The friction coefficients, γ, were 

obtained using the Stoke's relationS31, and the values for the various cases considered are 

summarized in Table S3 . 

Table S4: Friction coefficients, γ, used in the stochastic dynamics simulations of suspended NPs in aqueous 

media. Note that γ = 6πμR, where μ is the water viscosity and R is the NP radius.  

NPs Radius [nm] γ·10-11 [kg/s] 

Charged BNP 0.85 1.363 

Neutral BNP 2 3.207 

SDS CNP 2.41 3.864 

DTAB CNP 2.45 3.929 

It is worth noting that the CNPs are treated as Brownian particles having an equivalent radius equal 

to the radius of the BNP plus the thickness of the surfactant coating in the NP. A thicker coating is 

attributed to the DTAB NPs because of their morphology, as discussed in the Results and Discussion 

section. Some representative snapshots of the SD simulations are shown in Fig. S10. Specifically, in 

Fig. S10 (a) and (b) we qualitatively compare the cluster distribution in a NP suspension of volume 

fraction Φ = 1% when the classical DLVO (Eq. 2 in the main text) theory and the calculated PMFs 

(Case2 in Table S2) are used respectively as inter-particle potentials. As already discussed, the 

potential energy predicted by the DLVO theory between two BNPs overestimates the attractive 

interaction energy, thereby leading to a fast kinetics of NP aggregation. Fig. S10 (c) shows an 

example of a fully aggregated nano-suspension with volume fraction Φ = 5%.  

 

 

Fig. S10: (a-b) Representative SD simulation snapshots of a NP suspension with Φ = 1% at t = 0.1 ms obtained 

by assuming (a) the DLVO theory, and (b) the simulated PMF as the NP interaction potential energy. Both 

compact and elongated clusters are highlighted in (a), contrary to the standard assumptions in the DLCA 

regime about cluster shape and size. (c) SD simulation snapshot of a NP suspension with Φ = 5% obtained by 

implementing the current Multi-Scale (MS) model. About a single cluster is observed. 

The convergence of the SD simulations was evaluated by monitoring the evolution of the total 

energy in time. Fig. S11 (a) and Fig. S11 (b) show the sum of the potential and the kinetic energies 
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of the nano-suspensions considered as a function of the simulated time. We report the evolution of 

the total energy for several NP volume fractions in the case of charged BNPs (Fig. S11 (a)) and neutral 

BNPs (Fig. S11 (b)). While the SD simulations of charged BNP suspensions reach steady state almost 

immediately (see Fig. S11 (a)), the SD simulations of neutral BNP suspensions attain steady state 

only after 0.8 ms (see Fig. S11 (b)).  

 

Fig. S11: (a) Total energy vs. time calculated using stochastic dynamics simulations of suspended NPs (R = 

0.85 nm, and σq = -0.346 C/m2) in aqueous solution with [NaCl] = 0.01 M. Three particle volume fractions, Φ, 

are considered. (b) Total energy vs. time calculated using stochastic dynamics simulations of suspended NPs 

of Radius = 2 nm in aqueous solution. Five particle volume fractions, Φ, are considered.  

In order to validate the convergence of the SD simulations, we extrapolated the variation of the 

total energy after 12 hours from the last step of the SD simulations, namely from 0.8 ms. Specifically, 

we first fitted the energy vs. time curves shown in Fig. S11 with the following equation: 

E =  −E0(1 − exp(− t
τ0

⁄ )) + ∑ Ei exp(− t
τi

⁄ )

2

i=1

, (13) 

where E0, τ0, Ei, and τi are the fitting parameters reported in Table S4. Then, we evaluated the 

percentage variation as follows: 

var =  
(|Efin| − |Ein|) |Efin|⁄

tfin − tin
 (14) 

where tfin is the final time considered for the calculation, namely 12 hours,  𝐸𝑓𝑖𝑛 is the energy value 

at tfin, and Ein is the value of the total energy at tin = 0.8 ms.  

𝚽 [%] 𝐄𝟎 [𝐌𝐉 𝐦𝐨𝐥⁄ ] 𝐄𝟏[𝐌𝐉 𝐦𝐨𝐥⁄ ] 𝐄𝟐 [𝐌𝐉 𝐦𝐨𝐥⁄ ] 𝛕𝟎 [𝐦𝐬] 𝛕𝟏 [𝐦𝐬] 𝛕𝟐 [𝐦𝐬] 𝐑𝟐 

0.125 100 0 0 1.698·10-1 - - 0.996 

0.2 103.5 79 -79 5.91·10-2 1.792·10-1 8.94·10-2 0.999 

0.5 103.6 79.15 -79.1 2.34·10-1 2.1·10-2 2.558·10-1 0.999 

1 104.5 79 -79 1.124·10-1 1.04·10-2 1.096·10-1 0.995 
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2 104 17.62 -18.82 5.13·10-3 9.92·10-2 4.5·10-3 0.996 

Table S4: Compilation of the six fitted parameters in Eq. 13 utilized to reproduce the energy profile as a 

function of time (see Fig. S11 (b)). Note that the fitting data were found for each volume fraction Φ. R2 

indicates the goodness of the fit. 

We found that the percentage variation of the total energy in approximately 12 hours is always less 

than 6.64·10-9 %. This extremely low value validates the steady state condition of the nano-

suspensions considered after 0.8 ms. Note that for tfin  → ∞, Efin  →  E0 (the asymptotic values of 

the energies, 𝐸0, are reported in Table S4).  

In order to verify that our Stochastic Dynamics results are not system size dependent, we increased 

the box size as well as the number of nanoparticles while keeping constant the volume fraction. 

Specifically, we tested the system size independence in suspensions of particle volume fractions, Φ 

= 2% and Φ = 0.5% . Therefore, we systematically carried out SD simulations of suspensions with 

4000, 8000 and 16000 nanoparticles. The results are collected in Fig. S12, where the calculated 

physical quantities are compared with those one of the original system, composed of 2000 

nanoparticles.  

 

Fig. S12: (a) Total energy per single NP calculated using stochastic dynamics simulations of neutral BNPs in 

aqueous solutions. Two NP volume fraction are considered, namely Φ  = 2% and Φ  = 0.5%. For each volume 

fraction considered, suspensions of 2000 (2k), 4000 (4k), 8000 (8k) and 16000 (16k) NPs are simulated and 

compared in terms of the total energy per single NP. (b) Radial distribution functions, (g(r)), of suspended 

neutral BNPs at volume fractions Φ = 2%. The g(r) is computed in suspensions of 2000 (2k), 4000 (4k), 8000 
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(8k) and 16000 (16k) BNPs. (c) Ratio of the thermal conductivity of nanosuspension (kNS), maximum cluster 

radius (Rmax) and average fractal dimension parameter (df) with respect to the reference values of kNS
0 , 

Rmax
0  and df

0 corresponding to a suspension of 2000 BNPs. The values of kNS/kNS
0 , Rmax/Rmax

0   and df/df
0 

are computed for nanosuspensions of 4000, 8000 and 16000 BNPs concentrated at  Φ  = 2%. 

As Fig. S12 (a) shows, the  potential energy per NP of the above-mentioned configurations is 

completely independent from the system size, while it only depends on the NP volume fractions. 

The radial distribution functions, g(r), plotted in Fig. S12 (b)  and correspond to the NPs in the four 

configurations (#NPs = 2000, #NPs = 4000, #NPs = 8000, #NPs = 16000) also exhibit a congruent 

shape and analogous peaks, thereby showing that the dendritic structure is recovered 

independently from the system size.  

The influence of the system size is finally investigated in terms of thermal conductivity of 

nanosuspension (kNS), maximum cluster radius (Rmax) and average fractal dimension parameter (df). 

Such values are compared with those one calculated in the reference configuration characterized 

by a suspension of 2000 NPs. As Fig. S12 (c) highlights, the system size does not affect the thermal 

conductivity results and the fractal dimension parameters of the resulting cluster for a given volume 

fraction. Note that, besides the interaction potential, the final shape of the aggregates is also 

determined by the intrinsic randomness of the SD algorithm, which explains the small differences 

in the value of the radius of the larger aggregate in each configuration. 

4.2. Time Evolution of the NP Clusters 

For each volume fraction, we carried out the cluster analysis at several frames along the simulation 

trajectories, thereby providing a global picture of the kinetics of NP aggregation. Simulation 

snapshots of the self-assembly process are shown in Fig. S13 (a-d), at various time steps (t = 0 ms, t 

= 0.007 ms, t = 0.023 ms, and t = 0.055 ms). In the early stage of the self-assembly process, the NP 

suspension contains primarily small clusters. After a few μs, the nanoparticles begin to form bigger 

clusters of different fractal dimensions. Finally, at t = 0.055 ms, a few large-size clusters can be 

observed in the simulation box. A more quantitative description of the kinetics of NP aggregation is 

presented in Fig. S13 (e). The plot shows the time evolution of the number of clusters of various 

sizes, from t = 0 ms to t = 0.055 ms. As expected, initially (t < 0.01 ms), the number of clusters with 

less than 5 NPs (purple curve) decreases, because these small aggregates progressively form clusters 

containing more NPs, i.e., clusters consisting of 6 to 20 NPs (green curve) and 21 to 50 NPs (blue 

curve). However, the life-time of these larger aggregates decreases because they self-assemble into 

bigger structures consisting of more than 50 NPs. After about 0.0045 ms, the kinetics of NP 

aggregation slows down, and the number of clusters of a given size plateaus to a constant value (see 

orange and black curves in Fig. S13(e)). 
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Fig. S13: The aggregation state of suspended nanoparticles (Φ = 2%) at (a) t = 0 ms, (b) t = 0.007 ms, (c) t = 

0.023 ms, and (d) t = 0.055 ms. The number of clusters (# Clusters) of a specific size (# NPs) is plotted during 

the first (e) 0.06 ms and (f) 0.7ms of the trajectory for a NP suspension with Φ = 2% and Φ = 0.25%, 

respectively. Note that the radius of the neutral BNP is equal to 2 nm. 

In summary, Fig. S13 (e) illustrates the possible scenarios involved in NP cluster formation: on the 

one hand, the growth of NP clusters results from the progressive addition of single-dispersed NPs 

which gradually decrease in number, and on the other hand, the aggregation cohesion of medium-

size NP clusters can directly form a bigger one. Fig. S13 (f) displays the time-dependent size 

distribution of the NP aggregates when Φ = 0.25%, from t = 0 ms to t = 0.7 ms. Although the trends 

are similar to those observed when Φ = 2%, the characteristic times for self-assembly are 

remarkably different (compare the x-axes in Fig. S13 (e) and Fig. S13 (f)). For example, when Φ = 2% 

and t = 0.055 ms, the aggregation of NPs has almost reached steady state (see Fig. S13 (e)). On the 

other hand, when Φ = 0.25% and t = 0.055 ms (see Fig. S13 (f)), the NP self-assembly process is in 

its early stages. 

5. Prediction of the Thermal Conductivity by Coupling the DLVO and the Kinetic 

Aggregation Theory 

In the main text, we have shown how we combined the adaptation of the Bruggeman (BG) modelS32 

to the cluster analysis of our multi-scale method in order to predict the thermal conductivity of NP 

suspensions. We validated our approach by comparing the results of the thermal conductivity with 

(i) experimental data, and (ii) theoretically predicted values (Figure 7 in the main text). In this 

section, we describe how we calculated the thermal conductivity in case (ii). Specifically, instead of 

considering the distribution of NP clusters obtained by SD simulations, we coupled the DLVO theory 
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and the kinetic aggregation theory to calculate the dynamics and the characteristic time of NP 

aggregation. Then, we used the adaptation of the BG model to compute the thermal conductivity. 

The evolution of NP aggregation was predicted by applying the Smoluchowski kinetic theoryS33 

which involves a set of population balance equations (PBEs) describing the evolution of the number 

of clusters, 𝑁𝑘, with size k at time t. Assuming that the coagulation starts from a homogeneous 

dispersion of nanoparticles, the PBEs reduce to: 

dNk

dt
=  

1

2
∑ KijNiNj −  ∑ KkiNiNk

∞

i=1

,

k−1

i=1

 (15) 

where Kij is the agglomeration frequency and is a function of the stability ratio Wij
S34: 

Wij = 2 ∫
B(u)

(2 + u2)

∞

0

exp (
Utot,ij

kBT
) dr, (16) 

where kB is the Boltzmann constant, T  is the absolute temperature, Utot,ij is the total interaction 

energy between particles i and j, and B(u) is the hydrodynamic resistance function given by 𝐵(𝑢) =

 (6𝑢2 + 13𝑢 + 2) (6𝑢2 + 4𝑢)⁄ , where u = h/Rp is a dimensionless parameter based on the 

surface-surface particle distance, h, and the NP radius, Rp. It is worth noting that because the 

fragmentation of the NP clusters is considered negligible in the absence of shear, we carried out the 

present study assuming that only aggregation occurs between clusters. The stability ratio was 

evaluated by introducing, as interaction potential Utot in Eq. 16, the classical DLVO potential energy 

corresponding to the BNPs. In particular, Eq. 2 in the main text is used to calculate the Utot of BNPs 

when the pH is close to the isoelectric point (pH = IEP). On the other hand, a summation of Eqs. 2 

and 4 in the main text is applied to compute Utot between BNPs suspended in aqueous solutions 

with pH ≠ IEP. We point out that here we used the experimental zeta potential values as a function 

of alumina nano-suspension pHS35 to predict the NP surface potential (𝜓0 in Eq. 4 of the main text). 

Knowing the stability ratio Wij, the time for NP aggregation was calculated as followsS34: 

tp =  
πμRp

3W

kBTΦ
, (17) 

where 𝜇 is the viscosity of the fluid, Rp = 2 nm is the NP radius, and Φ is the NP volume fraction. 

Subsequently, we evaluated the concentration of NPs inside the clusters as followsS34: 

Φin =  (Ra Rp⁄ )
df−3

=  (1 +  t tp⁄ )
(df−3)/df

, (18) 

where 𝑑𝑓 was assumed to be constant and equal to 1.8 in the case of fast diffusion-limited 

aggregation (pH = IEP), and to 2.5 in the case of reaction-limited aggregation kinetics (pH = 5 and pH 

= 1)S36. We specify that, differently from the cluster analysis based on our SD simulations, here, the 

fractal dimension parameters are assumed to be constant for all the NP clusters inside the specific 

nano-suspension. Finally, the values of Φ𝑖𝑛 corresponding to the nano-suspensions considered were 

included in the adapted BG model (Eq. 9 and 10 of the main text) to calculate the theoretical thermal 

conductivity values. The black curves in Fig. S14 show the theoretically predicted values, kNS kbf⁄ , 
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obtained following the previously described approach. In order to include a window of values 

corresponding to NP suspensions at different chemical conditions, kNS kbf⁄  was calculated at three 

different solution pHs, namely, (a) pH = IEP, (b) pH = 5, and (c) pH = 1. The solid curves in Fig. S14 

show the values of  kNS kbf⁄  after 12 hours from the initial condition of mono-disperse NPs. This 

time can be considered as reasonable for the experimental measurements carried out hereS37. The 

dashed curves, instead, indicate the results of kNS kbf⁄  related to the limiting condition of Φ𝑖𝑛 =  Φ, 

namely, when the NPs are completely aggregated. It is interesting to see that when the solid curve 

is above the dashed curve (see Fig. S14), the nano-suspensions reach a completely-aggregated state 

before 12 h. On the other hand, the complete aggregated state is obtained after 12 hours. Table S6 

reports the characteristic time corresponding to the limiting condition of Φin =  Φ (dashed curve in 

Fig. S14). As Fig. S14 shows, although the relative thermal conductivity increases as the aggregation 

becomes more intense, until complete aggregation takes place, such theoretical values remain very 

far from the experimental predictions. 

Characteristic Time [s] 

 𝚽 = 𝟎. 𝟐 % 𝚽 = 𝟎. 𝟓 % 𝚽 = 𝟏 % 𝚽 = 𝟐 % 

pH = IEP 0.0233 0.0021 3.376·10-4 6.147·10-5 

pH = 5 1.3·109 4.1·106 5.2·104 873.59 

pH = 1 1.58·1011 4.86·108 6.14·106 1.03·105 

Table S5: Characteristic time to obtain fully aggregated nano-suspensions (Φ𝑖𝑛 =  Φ), as a function of 

solution pH and NP volume fraction, Φ. The characteristic time for complete aggregation is calculated 

according to the DLVO-based kinetic aggregation theory (see Eqs. 15, 16 and 17). 

 

Fig. S14: (a-c) Relative thermal conductivity, kNS/kbf, of suspended alumina NPs in water as a function of the 

particle volume fraction, Φ, at (a) pH = 9.1, (b) pH = 5, and (c) pH = 1. The black solid and dashed curves 

represent the predictions of kNS/kbf using the DLVO theory and the kinetic aggregation theory discussed 

above, respectively. The thermal conductivity values are calculated after 12 hours (black solid curves), as well 

as when the suspensions have reached a completely-aggregated state, namely when Φin =  Φ (black dashed 

curves).  The blue dots are calculated following the multi-scale (MS) model presented in the main text. The 

values of kNS/kbf  are also compared with the experimental data reported in the literature: the orange 

diamonds fromS38, the green stars are fromS39, the yellow squares fromS40, and the light blue triangles fromS41. 
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5.2 The Influence of Kapitza Resistance on the Thermal Conductivity Calculation 

The presence of a thermal resistance, also known as Kapitza resistance,  at solid-liquid interface 

plays a crucial role in several thermal transport phenomena and it has been largely studied and 

discussed in the literatureS45,S46. In the field of nanoparticle suspensions, NanS46 and PutnamS47 dealt 

with the effect of Kapitza resistance in well-dispersed NP suspensions. However, their models based 

on the fundamental assumption of a moderate concentration of NPs inside the clusters and the 

absence of elongated dendrites in the cluster structural shape. Consequently, such models show 

remarkable deficiencies if applied to our study cases which are often characterized by a strong 

kinetic of aggregation. 

However, in order to roughly estimate the effect of the Kapitza resistance on the thermal 

conductivity results, we modified the effective thermal conductive of the alumina NPs, 𝑘𝑝,𝑒𝑓𝑓 , 

according to the following model developed by EbrahimiS48:  

kp,eff =
2R

RK + 2R/kp
, 

 

(19) 

where 𝑘𝑝 is the alumina NP thermal conductivity and RK = 5 ∙ 108 Km2/W is the particle-water 

thermal resistance derived by TimofeevaS38 after fitting the experimental results on alumna NP 

suspensions. Therefore, we included the values of kp,eff in Eq. 9 of the main text, and we collected 

the results in Fig. S15.  

 

Fig. S15: Relative thermal conductivity ( 𝐤𝐫 = 𝐤𝐍𝐒 𝐤𝐛𝐟⁄  ) of suspended alumina BNPs in water as a function 

of the particle volume fraction, Φ. The blue and red dots represent the results obtained by applying, 

respectively, the MS Model and the MS Model coupled with the effect of thermal resistance 𝐑𝐊. 

Comparing the results in Fig. S15, we notice that the two approaches (MS Model and MS Model 

with RK) present similar trends, and the relative error remains below 3%. However, the presence of 
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aggregation phenomena and the consequently modification of the solid-liquid interface ration could 

bring to notable modulation of the RK. 

6. Theoretical Prediction of the Viscosity and Specific Heat Capacity 

To calculate the viscosity of the nano-suspension, we considered a widely adopted model first 

proposed by Krieger and DoughertyS42. Although this is one of the few theories that incorporates 

particle aggregation in the dispersion, the assumptions of limited-aggregation kinetics and regular 

cluster shape limit its use for any volume fraction. Accordingly, in the viscosity calculation, we 

excluded suspensions having 1% and 2% particle volume fractions, where significant NP aggregation 

phenomena take place. After evaluating the internal volume fraction of the aggregates, Φ𝑖𝑛 using 

Eq. 18, the viscosity of each suspension, characterized by a specific cluster i, is expressed as 

followsS43: 

μNSi
=  μbf (1 −

Φai

Φm
)

−ηΦm

, (19) 

where η is the intrinsic viscosity and Φm are 2.5 and 0.73, respectivelyS43. Note that Φm is strongly 

related to the NP packing in the aggregate. Similar to the evaluation of the thermal conductivity of 

the NP suspension, the overall viscosity of the nano-suspension, for a given particle volume fraction, 

is given by:  

μNS =  
∑ μNSi

Nc
i=1

Nc
, (20) 

where Nc is the number of fictitious suspensions, each consisting of identical aggregates. The 

viscosity calculation presented above includes one of the few theoretical models reported in 

literature and accounting for the internal volume fraction in the aggregates. However, we point out 

that the values of viscosity were obtained by keeping constant the intrinsic viscosity and maximum 

concentration, respectively η and Φm, which are instead related to the cluster geometry and the 

actual applied shear rate. As a consequence, in accordance to the model proposed, we assumed the 

growth of well-packed aggregates neglecting for the effective dendritic shape of each cluster and 

overestimating Φm.  A correction of the present theory according to the actual shape of the cluster 

would significantly enhance its predictive ability, however this is beyond the scope of this paper. 

Finally, to calculate the specific heat capacity of the NP suspension, we utilized the following 

volume-fraction averaged equationS44: 

cp,NS =  
(1 − Φ)(ρcp)

bf
+  Φ(ρcp)

p
 

ρNS
, 

 

(21) 

where (ρcp)
bf

 = 4166.5 kJ/K·m3 and (ρcp)
p

 = 3056.7 kJ/K·m3 are the base fluid and alumina 

volumetric heat capacities, respectively. The resulting relative viscosity and Prandtl number 

(Pr = cp,NS kNS μNS⁄ ) of the nano-suspensions at the three volume fractions considered are 
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reported in Table S6. As expected, the observed increase in the thermal conductivity with NP volume 

fraction (see Fig. S15) is accompanied by a concomitant increase in viscosity. This finding indicates 

the need for a trade-off in the use of nano-suspensions in thermal transport applications. Indeed, 

attaining desirable higher thermal conductivities requires using NP suspensions having higher 

viscosities, which may be practically detrimental. 

𝚽 [%] 𝛍𝐍𝐒 𝛍𝐛𝐟⁄  𝑷𝒓 

0.125 1.02±0.01 4.2 

0.2 1.04±0.01 4.3 

0.5 1.22±0.2 4.8 

Table S6: Relative thermal conductivity, kNS kbf⁄ , and viscosity, μNS μbf⁄ , of the NP suspensions computed 

using the SD cluster analysis as an input. As explained in the text (see also Reference S43), the viscosities 

were not calculated for NP suspensions having values of Φ = 1% and Φ = 2%. 
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