Electronic Supplementary Information (ESI)

FeP@C Nanoarray Vertically Grown on Graphene Nanosheets: An Ultrastable Li-Ion Battery Anode with Pseudocapacitance-boosted Electrochemical Kinetics

Bao-Hua Hou,^a Ying-Ying Wang,^b Qiu-Li Ning,^a Chao-Ying Fan,^c Xiao-Tong Xi,^a Xu Yang,^a Jiawei Wang,^{*d} Jing-Ping Zhang,^a Xinlong Wang,^{*a} Xing-Long Wu^{*a,c}

^a National & Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry,

Northeast Normal University, Changchun, Jilin 130024, P. R. China.

^b Collaborative Innovation Center of Advanced Energy Materials, School of Materials and

Energy, Guangdong University of Technology, Guangzhou 510006, China.

^c Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal

University, Ministry of Education, Changchun, Jilin 130024, P. R. China.

^d State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China

*Corresponding Author

E-mail address: xinglong@nenu.edu.cn (X.-L. Wu)

Calculation process of TGA

$$FeP + 2O_2 \rightarrow \frac{1}{2}Fe_2O_3 + \frac{1}{2}P_2O_5$$
 $M_{FeP} = 87, M_{O_2} = 32$

For U-FP@C:

For $G \perp FP(a)C-NA$:

$$\begin{split} m_{FeP1} + 2*\frac{m_{FeP1}}{M_{FeP}}*M_{O_2} &= 131\% & m_{FeP2} + 2*\frac{m_{FeP2}}{M_{FeP}}*M_{O_2} &= 119\% \\ m_{FeP1} &= 75\% & m_{FeP2} &= 69\% \\ m_{C1} &= 1 - m_{FeP1} &= 25\% & m_{C2} &= m_{FeP2}\frac{m_{C1}}{m_{FeP1}} &= 23\% \\ m_{G} &= 1 - m_{FeP2} - m_{C2} &= 8\% \end{split}$$

Figure S1. (a, b) The SEM images of $G \perp FP@C-NA$ with different scale. (c, d) The TEM images of $G \perp FP@C-NA$, and the yellow line marks the FeP nanorods.

Figure S2. The charge and discharge curves of the initial three cycles at 50 mAh g⁻¹ for $G \perp FP@C-NA$ and U-FP@C.

Figure S3. SEM images on the surface of $G \perp FP@C-NA$ electrode after 100 cycles at 500 mA g⁻¹.

Figure S4. SEM images on the surface of U-FP@C electrode after 100 cycles at 500 mA g⁻¹.

Figure S5. (a) Rate performance and (b) charge and discharge curves at different current densities of $G \perp FP@C$ -NA and U-FP@C without the active process.

Figure S6. (a) XRD pattern, (b) SEM image, (c) GCD curves, rate performance and cycling stability of LiFePO₄.

Figure S7. GCD curves of $G \perp FP@C-NA//LiFePO_4$ full cell.

Figure S8. A photograph shows that the full battery can light up a LED bulb.

Figure S9. Rate performance of $G \perp FP@C-NA//LiFePO_4$ full cell.

Figure S10. Cycling stability of $G \perp FP@C-NA//LiFePO_4$ full cell.

Figure S11. (a) CV curves at different scan rate, (b) log(i) versus log(v) plot, and (c) the pseudocapacitive contribution at different scan rates and (d) CV curve with the pseudocapacitive fraction at a scan rate of 1 mV s⁻¹ of U-FP@C.

Figure S12. Nyquist plots of $G \perp FP@C-NA$ and U-FP@C from 1 MHz to 0.1 Hz.

Numbers	Samples	Coulombic Efficiency (1 st cycle)	Current density (mA g ⁻¹)	Capacity (1 st cycle) (mAh g ⁻¹)	Cycle numbers (n)	Capacity after cycle (mAh g ⁻¹)	Capacity decay rate per cycle
1	G/FeP	71.60%	500	768.2	500	1009	-0.06%
			2000	506.5	1300	355.9	0.02%
2 ^[1]	H-FeP@C@GR	74%	200	1154	100	771	0.33%
			500	885	300	542	0.13%
3 ^[2]	FeP@rGO	73%	100	1180	100	997	0.16%
			1000	475	400	470	0.00%
4 ^[3]	FeP	58.1%	100	575	50	334	0.84%
5 ^[4]	FeP@C	70%	200	720	100	720	0.00%
			500	610	400	610	0.00%
6 ^[5]	Mesoporous FeP	49%	144	390	30	355	0.30%
7 ^[6]	Nanorod-FeP@C	28.10%	30	277	200	480	-0.37%
8[7]	Nanoscaled FeP _y	75%	20	1486	10	1089	2.67%
			60	908	10	581	3.60%
9 ^[8]	FeP ₂ -amorphous	61%	0.1C	766	10	882	-1.51%
			0.2C	310	100	300	0.03%

Table S1. The comparison of the cycling stability between the present $G \perp FP@C-NA$ and other FeP-based anode materials previously reported in recent years.

Reference

- [1] X. Wang, K. Chen, G. Wang, X. Liu, H. Wang, ACS Nano 2017, 11, 11602.
- H. Jiang, B. Chen, J. Pan, C. Li, C. Liu, L. Liu, T. Yang, W. Li, H. Li, Y. Wang, L. Chen,
 M. Chen, J. Alloys Compd. 2017, 728, 328.
- [3] P. S. Veluri, S. Mitra, *RSC Adv.* **2016**, *6*, 87675.
- [4] F. Han, C. Zhang, J. Yang, G. Ma, K. He, X. Li, J. Mater. Chem. A 2016, 4, 12781.
- [5] M. Pramanik, Y. Tsujimoto, V. Malgras, S. X. Dou, J. H. Kim, Y. Yamauchi, *Chemistry* of Materials **2015**, *27*, 1082.
- [6] J. Jiang, C. Wang, J. Liang, J. Zuo, Q. Yang, *Dalton Trans.* 2015, 44, 10297.
- [7] G. Wang, R. Zhang, T. Jiang, N. A. Chernova, Z. Dong, M. S. Whittingham, *J. Power Sources* **2014**, *270*, 248.
- [8] J. W. Hall, N. Membreno, J. Wu, H. Celio, R. A. Jones, K. J. Stevenson, J. Am. Chem. Soc. 2012, 134, 5532.