Supplementary Information

Low-Temperature-Annealed and UV-Ozone-Enhanced Combustion

Derived Nickel Oxide Hole Injection Layer for Flexible Quantum Dot

Light-Emitting Diodes

Yizhe Sun^{1,2}, Wei Chen², Yinghui Wu², Zhubing He², Shengdong Zhang^{1*}, Shuming Chen^{2*}

¹Institute of Microelectronics, Peking University, Beijing, P. R. China, 100871

zhangsd@pku.edu.cn

²Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, P. R. China, 518055

chen.sm@sustc.edu.cn

Figure S1. Histogram of maximum EQE of 28 QLEDs based on 20 min UVO treatment from different batches.

Figure S2. (a) L-V characteristics of the flexible QLEDs based on combustion derived NiOx HILs.The inset shows the photograph of the device working at a highly bent state with uniform emission.(b) J-V and (c) CE-J-EQE characteristics of the flexible QLEDs based on UVO-NiO_x HILs.

Figure S3. 3D AFM topography comparison of the (a) pristine NiO_x , (b) UVO- NiO_x , and (c) PEDOT:PSS films.