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Supporting Information

Effects of data inconsistencies

Here we show in Figure 1 on a simple example which type of data inconsistencies typically

occur and what their effects on the reconstruction are. Supporting Figure 1a shows the

original data and its reconstruction.

Intensity fluctuations. In electron tomography data one might observe intensity fluctu-
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ations between different tilt angles. There are two main sources for this effects: Partial

shadowing of the detector, and residual diffraction contrast. Partial detector shadowing is

present in our case at very large tilt angles, as we used a conventional TEM grid, where

a part of the scattered electrons may hit the (tilted) TEM grid. HAADF STEM as well

as EELS and EDXS are TEM techniques with low contributions of diffraction contrast,

which is why they are the principal techniques used for electron tomography of crystalline

samples. However some contribution of diffraction contrast can still be present, which leads

to brightness fluctuations depending on tilt angles, and in extreme cases may even lead

to contrast inversion. Both these effects are depicted in Supporting Figure 1b, where the

intensities in the sinogram are fluctuating, and the topmost and bottommost projections

(corresponding to large tilt angles) are darker. This can lead to additive artifacts appearing

inside and outside the observed object.

Non-zero basevalue & Gaussian noise. Often, the data get rescaled in the line of

procession before reconstruction starts, however, for the Radon transform it is imperative

that the basevalue (which correspond to no density) has the value 0. Also, such data suffers

from thermic (Gaussian) noise due to the electronics of the detector. Though generally

much lower than the Poisson noise, Gaussian noise is particularly relevant in points with no

density, which is not consistent to the noise model, see Supporting Figure 1c. Therefore, the

reconstruction scheme must insert additional mass to make up for the non-zero basevalue

and noise outside the object, resulting in noise and halo artifacts occurring.

Misalignment. Misalignment of the tilt series can be an issue in electron tomography.

One must also be wary, that the alignment of the projection is correct, meaning that

each projection is centered with respect to a common tilt axis. An example for a severely

misaligned sinogram is shown in Supporting Figure 1d along with its reconstruction. An

non-correct alignment leads to blurring of the image, and artifacts outside the object as one

can see in the reconstruction. For good alignment we used center of mass and common-line
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Figure 1: Experiments on effects of inconsistent data. (a) original, (b) intensity fluctuations,
(c) non-zero basevalue, (d) misalignment. The top row shows the sinograms and the bottom
row the corresponding reconstructions.

alignment methods as described in the section Data preprocessing.

We note that although each of these artifacts appearing without preprocessing might

not be very significant, when all the described problems occur at once, they further amplify

one another.

Table 1: Parameter choice for the reconstructions of the phantom data presented in the
paper. For SIRT we provide the number of iterations and for TV and TGV regularization
the weights of the data discrepancies of the different channels.

SIRT TV Uncorr. 2D TV Coupl. 2D TV Uncorr. 3D TV Coupl. 3D

HAADF 50 0.5 0.5 0.2 0.2
Ytterbium 25 5.5 10-4 1 10-4 8 10-4 5 10-4

Aluminum 25 20 10-4 15 10-4 60 10-4 40 10-4

Silicon 25 5.5 10-4 1.5 10-4 10 10-4 5 10-4

TGV Uncorr. 2D TGV Coupl. 2D TGV Uncorr. 3D TGV Coupl. 3D

HAADF 0.3 0.3 0.2 0.2
Ytterbium 2.5 10-4 2 10-4 7.5 10-4 5 10-4

Aluminum 25 10-4 10 10-4 60 10-4 40 10-4

Silicon 5 10-4 2.5 10-4 10 10-4 5 10-4
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Figure 2: Projections of EDXS data for the experimental data discussed in the section
Experimental reconstruction: (a) Yb L-lines, (b) Al K-lines, (c) Si K-lines under 3 different
viewing angles.

Extension to limited angle tomography

Here we provide further experiments and automatic parameter choice strategies for the

situation of different, limited angle measurements. Regarding the parameter choice for

varying, limited angle measurements, we have adopted the following heuristic: Given a

set of parameters that are well suited for an experiment with a certain number of angle

measurements, for a second measurement define λ to be the fraction of available angle

measurements for the new measurement compared to the original one, e.g., λ = 1/2 would

mean that only half as many measurements are available. Since reduced measurements

reduce the overall cost of the data term by the same factor, we compensate for that by

rescaling all parameters µc with the factor 1/λ. Figure 4 shows results using this strategy

with 3D TGV regularization for different, limited angle measurements, where the experiment

and parameter setting of Figure 3 of the paper were taken as reference setting. As can be

observed, while reduced angle measurements naturally degrade image quality, the results
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Figure 3: Comparison of different numbers of iterations for SIRT reconstructions of
HAADF and EDXS data for the experimental data discussed in the section Experimental
reconstruction. The chosen reconstructions are framed in red.

Figure 4: Effects of limited angles on reconstruction. Shows HAADF (upper row) and EDX
(lower row) reconstructions with angle range ±50◦ ±70◦ and ±80◦ using 3-dimensional
coupled TGV.
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are still rather reasonable indicating that the proposed parameter adaption strategy is

effective.

Quantitative analysis of experiments

In section “Reconstruction of phantom data” qualitative results for the phantom were

shown, which we want to extent here with some quantitative analysis. To this aim, we have

computed SIRT-, uncoupled 2D TV- and coupled 3D TGV reconstructions for the simulated

data and 100 different noise realizations, using the parameters as described in Table 1.

Figure 5 shows, for the three methods and the aluminum channel, the point-wise mean over

all noise realizations, the point-wise difference of the mean to the ground truth and the

pointwise standard deviation. It can be observed that TGV has a mean that is closest to the

ground truth while at the same time also having the lowest standard deviation. This visual

observation is confirmed by Table 2, showing lowest mean error and standard deviation

for 3-dimensional coupled TGV. Here, mean error refers to the root of the squared sum of

the point-wise difference between the mean and the ground truth for each method and the

standard deviation is the root of the squared sum of the point-wise standard deviation.
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Figure 5: Mean and standard deviation maps for the
aluminum channel over 100 different noise realizations.

Mean error ± Std

SIRT 10.50± 24.43

TV 8.52± 4.93

TGV 6.073± 2.44

Table 2: Mean error ± stan-
dard deviation.

Computational evaluation of the Radon transform implementation

As described in the ”Variational modeling” section, our algorithm uses a custom, GPU-based

implementation of the discrete Radon transform. Here we provide a brief comparison of this

implementation against the one of the Astra toolbox1,2. The first experiment concerns the

numerical adjointness of the forward and adjoint operator. As mentioned in ”Variational

modeling”, one advantage of our custom implementation is that the adjoint operator is the

numerical adjoint, which is important for convergence of iterative algorithms. To evaluate

this, we carried out the following experiment. Based on a simulated ground truth image,

two different data, once with the Astra forward operator and once with our implementation,

were generated. Then, a Landweber3 reconstruction was carried out, using the Astra

forward and backward operator for the Astra-generated data and our operators for the

other one. As the convergence plot in Figure 6 shows, both methods converge well up to a

certain accuracy but then convergence with the Astra operator slows down and saturates.

We believe that this can be attributed to numerical errors due to the adjoint operator
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not being the numerical adjoint. As second experiment, Table 3 shows the computation

time for 104 repetitions of the forward and backward transform using once our custom

implementation and once the one of the Astra toolbox. As can be seen there, in this simple

test our method performs comparable to the Astra implementation.

Figure 6: Residue of a Landweber reconstruction approach using either the Astra or the
proposed implementations of the Radon transform and the backprojection for a single slice
of the phantom data for aluminum with 305 × 305 pixels, 320 detectors and 100 angles
equally distributed.

GPU GeForce GTX 980 Nvidia Tesla K40c

Implementation Astra Proposed Astra Proposed

Radon transform 24.34 24.02 44.05 38.02

Backprojection 28.64 2.26 47.60 7.57

Table 3: Computation time (in seconds) on two different GPUs for 10000 evaluations with
the proposed GPU implementation and Astra GPU implementation on a single slice of
phantom data for aluminum with 305× 305 pixels, 320 detectors and 100 angles equally
distributed.
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