Supplementary Information

Atomistic real-space observation of van der Waals layered

structure and tailored morphology in VSe₂

Sunghun Lee,^a Jinsu Kim,^a Yun Chang Park,^b Seung-Hyun Chun^{a*}

^aDepartment of Physics and Astronomy, Sejong University, Seoul 05006, Korea

^bDepartment of Measurement and Analysis Team, National Nanofab Center, Daejeon, 34141, Korea.

* To whom correspondence should be addressed. Fax: +82-2-3408-4316 E-mail: <u>schun@sejong.ac.kr</u>

Figure S1. (a) X-ray diffraction (XRD) pattern of VSe₂ nanosheets ensemble synthesized on a mica substrate. All the peaks are indexed to hexagonal VSe₂ phase (JCPDS card no. 89-1641), except the peaks from mica substrate, marked with asterisks. (b) Combined XRD patterns with VSe₂ on mica (black solid line) and just mica substrate (red solid line). The predominant XRD peaks of VSe₂ can be detected solely.

Figure S2. (a) HAADF-STEM image of VSe_2 nanosheet and brightness profiles obtained at the line of the red box (b) and green box (c) in (a). The height of the peaks in the profiles indicates the intensity of high-angle scattered electron beams from the specimen's atoms. We conjecture the inplane lattice constant is in 3.26±0.2 Å, and out-of-plane lattice contant is in 6.27±0.3 Å.

