Unexpected monoatom catalytic-host synergetic OER/ORR by graphitic carbon nitride: Density functional theory

Yong Wu,¹ Can Li,¹* Wei Liu,² Huanhuan Li,¹ Yinyan Gong,¹ Lengyuan Niu,¹ Xinjuan Liu,¹

Changqing Sun³ and Shiqing Xu^{1*}

¹ College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018, China

²College of Materials Science and Engineering, Nanjing University of Science and Technology,

Nanjing 210011, China

³ School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

639798

Calculation Details

Two difference activity sites are considered and shown in Fig.1a, where the M_1 atom are labeled as site 1 and host atoms in the neighboring holes of M_1 atoms are labeled as site 2. The adsorption energies follow the approach of Nøeskov *et al.*, ¹

$$\Delta E_{\rm *H2O} = E(\rm sub/H_2O) - E(\rm sub) - E(\rm H_2O)$$
(S1)

$$\Delta E_{*O2} = E(\text{sub}/\text{O}_2) - E(\text{sub}) - 2 \times (E(\text{H}_2\text{O}) - E(\text{H}_2))$$
(S2)

$$\Delta E_{*0} = E(sub/O) - E(sub) - [E(H_2O) - E(H_2)]$$
(S3)

$$\Delta E_{*\rm OH} = E({\rm sub/OH}) - E({\rm sub}) - [E({\rm H}_2{\rm O}) - E({\rm H}_2)/2]$$
(S4)

$$\Delta E_{*OOH} = E(sub/OOH) - E(sub) - [2 \times E(H_2O) - 3 \times E(H_2)/2]$$
(S5)

where $E(\text{sub/H}_2\text{O})$, $E(\text{sub/O}_2)$, E(sub/O), E(sub/OH) and E(sub/OOH) denote the total energies of H₂O, O₂, O, OH and OOH groups on substrate. E(sub), $E(\text{H}_2\text{O})$ and $E(\text{H}_2)$ are the total energies of bare substrate, water, and hydrogen gas, respectively.

The electrochemical model of OER/ORR developed by Nøreskov² can be divided into four one–electron reactions:

$$H_2O + * \rightarrow *OH + (H^+ + e^-)$$
 (S6)

$$*OH + (H^+ + e^-) \rightarrow *O + 2(H^+ + e^-)$$
 (S7)

$$H_2O + *O + 2(H^+ + e^-) \rightarrow *OOH + 3(H^+ + e^-)$$
 (S8)

$$*OOH + 3(H^+ + e^-) \rightarrow O_2 + * + 4(H^+ + e^-)$$
 (S9)

The detailed Gibbs free energy changes of steps 6-9 can be calculated by:

$$\Delta G_1 = \Delta G_{*\rm OH} - eU \tag{S10}$$

$$\Delta G_2 = \Delta G_{*\rm O} - \Delta G_{*\rm OH} - eU \tag{S11}$$

$$\Delta G_3 = \Delta G_{*\rm OOH} - \Delta G_{*\rm O} - eU \tag{S12}$$

$$\Delta G_4 = 4.92 \text{eV} - \Delta G_{*\text{OOH}} - eU \tag{S13}$$

where the sum of ΔG_{1-4} is fixed to the negative of experimental Gibbs free energy of formation of two water molecules $(-2^{\Delta H_2^{exp}} = 4.92 \text{ eV}).^2$ The Gibbs free energy of $(H^+ + e^-)$ in solution is estimated as the half energy of H₂ molecule at standard condition.³ Since ORR $[O_2 + 4(H^+ + e^-) \rightarrow 2H_2O]$ is the reverse of OER, the Gibbs free energies of ORR are related to OER intermediates by the reference of +4.92 eV, *i.e.*, $\Delta_G^{OER}(int) = \Delta_G^{ORR}(int) + 4.92 \text{ eV}.^4$

The over-potential of OER is determined by following equations:

$$\eta^{\text{OER}} = U_{\text{OER}} - 1.23 \tag{S14}$$

$$U_{\text{OER}} = \text{Max}(\Delta G_{*\text{OH}}, \Delta G_{*\text{O}} - \Delta G_{*\text{OH}}, \Delta G_{*\text{OOH}} - \Delta G_{*\text{O}}, 4.92 \text{ eV} - \Delta G_{*\text{OOH}})/e \quad (S15)$$

The ORR under acidic conditions follows the opposite processes from Eq.S10 to Eq.S7. The over–potential of ORR is expressed as:

$$\eta^{\text{ORR}} = 1.23 - U_{\text{ORR}} \tag{S16}$$

 $U_{\text{ORR}} = -\text{Max} \left(\Delta G_{*\text{OOH}} - 4.92 \text{ eV}, \Delta G_{*\text{O}} - \Delta G_{*\text{OOH}}, \Delta G_{*\text{OH}} - \Delta G_{*\text{O}}, \neg \Delta G_{*\text{OH}}\right)/e \quad (S17)$

Figure S1. The total energy for (a) Fe_1 , (b) Co_1 , (c) Ni_1 , (d) Cu_1 , (e) $Zn_1/g-C_3N_4$ specimens during the whole dynamics simulation of 10 ps. The atomic structures at 0 ps and 10 ps of each specimen (Inset).

Figure S2. The electron density differences of $M_1/g-C_3N_4$ specimens (left), where the red and bule regions denote the obtained and lost electrons. The VBM (red regions) and CBM (yellow regions) of $M_1/g-C_3N_4$ specimens (right), the isosurface is taken at a value of 0.003 e/Bohr³

	*H ₂ O	*O ₂	*H ₂ O	*O ₂
$\mathrm{Fe}_{1}/\mathrm{g-C}_{3}\mathrm{N}_{4}$				
$\mathrm{Co}_{1}/\mathrm{g-C}_{3}\mathrm{N}_{4}$				
Ni ₁ /g-C ₃ N ₄				
$Cu_1/g-C_3N_4$				
$Zn_1/g-C_3N_4$		Jer Jer		

Figure S3. The atomic structures of H_2O and O_2 on both active site of $M_1/g-C_3N_4$.

Figure S4. The atomic structures of OH, O and OOH groups on $g-C_3N_4$, $Co_1/g-C_3N_4$ and $4Co_1/g-C_3N_4$, where the OOH bonding with Co_1 atom is considered as each intermediate is adsorbed on site 2.

	*OH	*O	*OOH
g-C ₃ N ₄			
$Co_1/g-C_3N_4$ Site 1			
$Co_1/g-C_3N_4$ Site 2			
$4\text{Co}_1/\text{g-C}_3\text{N}_4$			

Figure S5. (a) The transition states of OH, O and OOH groups form site 2 to site 1 of all $M_1/g-C_3N_4$. (b) The adsorption energies of OH, O and OOH groups on site 1 and site 2 of all $M_1/g-C_3N_4$.

	*OH	*0	*OOH
$Fe_1/g-C_3N_4$			
$Co_1/g-C_3N_4$			
Ni ₁ /g-C ₃ N ₄			A CONTRACTOR
$Cu_1/g-C_3N_4$			
$Zn_1/g-C_3N_4$			

Figure S6. The atomic structures of OH, O and OOH groups on site 1 of M_1/g – C_3N_4 .

Figure S7. The atomic structures of OH, O and OOH groups on site 2 of M_1/g – C_3N_4 , where the OOH or OH bonding with M_1 atom is considered to calculate the adsorption energies of intermediate on site 2 on account of the determining steps of reaction on site 1.

Figure S8. The Gibbs free energy changes during OER on site 1 (left) and site 2 (right) of all $M_1/g-C_3N_4$.

Figure S9. The Gibbs free energy changes during ORR on site 1 (left) and site 2 (right) of all $M_1/g-C_3N_4$.

Figure S10. The structure schematic diagrams of 3×3 supercell samples.

Figure S11. The Gibbs free energy changes of OER/ORR on sites 1 and 2 of 2×2 (red lines) and 3×3 (blue lines) supercells. The Gibbs free energy of site 1 for the left column and the Gibbs free energy of site 2 for the right column.

Figure S12. (a–e) The *d*–band PDOS of M_1 atoms and *p*–band PDOS of C plus N atoms at site 2 of M_1/g – C_3N_4 . (f) The proportional relationships between the *d*–band centre of M_1 atoms at site 1 and the *p*–band centre of C plus N atoms at site 2.

Table S1. The calcuated Mulliken charges of M_1 and the neighbouring N atoms of 2×2 supercell specimens.

	M_1	N
g-C ₃ N ₄	/	-0.39
$Fe_1/g-C_3N_4$	0.79	-0.45
$Co_1/g-C_3N_4$	0.85	-0.46
$Ni_1/g-C_3N_4$	0.88	-0.47
$Cu_1/g-C_3N_4$	0.90	-0.48
$Zn_1/g-C_3N_4$	1.17	-0.50

References

- 1. M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Nørskov and A. T. Bell, *J. Am. Chem. Soc.*, 2013, **135**, 13521-13530.
- 2. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, **108**, 17886-17892.
- J. Greeley, T. F. Jaramillo, J. Bonde, I. Chorkendorff and J. K. Nørskov, *Nat. Mater.*, 2006, 5, 909.
- 4. J. Rossmeisl, Z. W. Qu, H. Zhu, G. J. Kroes and J. K. Nørskov, J. Electroanal. Chem., 2007, 607, 83-89.