Structure-activity relationship of nanostructured ceria for the catalytic generation of hydroxyl radicals

Tamra J. Fisher, ${ }^{a}$ Yunyun Zhou, ${ }^{a, \dagger}$ Tai-Sing Wu, ${ }^{b}$ Meiyu Wang, ${ }^{c}$ Yun-Liang Soo, ${ }^{\text {b,d }}$ and Chin Li Cheung ${ }^{*}, a$
a. Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
b. Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.
c. Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
d. National Synchrotron Radiation Research Centre, Hsinchu 30076, Taiwan, R.O.C.
\dagger Present Address: National Energy Technology Laboratory, Pittsburgh, PA, 15236, United States

ELECTRONIC SUPPLEMENTARY INFORMATION

Figure S1. TEM image of commercial ceria particles.

[^0]

Figure S2. Ce 3d XPS spectra of ceria nanorods (NR), ceria nanocubes (NC), ceria nanooctahedra (NO), and commercial ceria. The spectra were normalized at 882.15 eV . The locations of the $\mathrm{Ce}^{3+} 3 \mathrm{~d}$ peaks are indicated by the dashed lines. Note: the similarities between the spectra suggests that these ceria samples have similar $\%$ of surface Ce^{3+}.

Figure S3. Reaction kinetics of catalytic generation of hydroxyl radicals with and without t butanol as the hydroxyl radical scavenger. Reaction conditions: Reaction temperature: $21.8{ }^{\circ} \mathrm{C}$; $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=3 \mathrm{mM}$; [Ceria NR $]=0.1 \mathrm{~g} / \mathrm{L} ;[t$-butanol $]=2 \mathrm{M}$.

Figure S4. Determination of optimum $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$ from reaction kinetics for the catalytic generation of hydroxyl radicals from disproportionation of hydrogen peroxide using ceria nanorods. Reaction conditions: $21.8^{\circ} \mathrm{C},\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=0.1-6 \mathrm{mM}$, [Ceria NR] $=0.1 \mathrm{~g} / \mathrm{L}$. The solid line was drawn to guide the eye on the trend line of the apparent reaction rate at higher $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$.

Figure S5. Reaction kinetics for the catalytic generation of hydroxyl radicals from disproportionation of hydrogen peroxide using ceria nanorods. (inset) Log-Log plot of the kinetics data for determining the reaction order with respect to the concentration of ceria nanorod catalysts. Reaction conditions: Reaction temperature: $21.8{ }^{\circ} \mathrm{C} ;\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]=3 \mathrm{mM}$; [Ceria NR] $=0.1$, 0.5 , and $1.0 \mathrm{~g} / \mathrm{L}$.

[^0]: ${ }^{\dagger}$ Present Address: National Energy Technology Laboratory, Pittsburgh, PA, 15236, United States.
 *Corresponding Author. Dr. Chin Li Cheung; Email: ccheung2@unl.edu

