Supporting information

Piezo-phototronic Enhanced Serrate-structured ZnO-based Heterojunction Photodetector for Optical Communication

Da Xiong,^a Weili Deng,^{*a} Guo Tian,^a Yuyu Gao,^a Xiang Chu,^a Cheng Yan,^a Long Jin,^a

Yuhan Su,^a Wei Yan,^b and Weiqing Yang,^{*a,c}

^a Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

^b State Key Laboratory of Optical Technologies for Microfabrication, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China

^c State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

Fig. S1. The cross-sectional SEM image of the Cu_2O with the electrochemical deposition time of 1.0 h.

Fig. S2. The SEM images of ZnO nanorods synthesized on the surface of Cu_2O (a). 0.5 h,

(b). 1.0 h, (c). 1.5 h

Fig. S3. (a) Photoresponse behaviors of the photodetector under a repetitive irradiation of more than 2500 cycles. (b) Photoresponse behaviors of the photodetector under long term radiation.

Fig. S4. The schematic diagram that serrate-structured design helps to improve stability

Fig. S5. The photoresponse behaviors of the photodetector with different strain (a). 450 nm, 1.77 mW/mm² (b). 532 nm, 1.77 mW/mm² (c). 650 nm, 1.77 mW/mm²

Materials	Bias	Detection	Dark	Photoc	Rise	Fall	Reference
		range	current	urrent	time	time	
ZnO/Si	-2 V	442 nm	3.17	131 µA	0.97	1.30	1
			μΑ		ms	ms	
ZnO/Ga ₂ O ₃	0 V	261 nm	< 1 nA	40 nA	< 0.3	<0.3 s	2
					S		
ZnO/PEDO	0 V	442 nm	-	65 nA	344.4	320.5	3
Т					ms	ms	
ZnO/PbS	10 V	350 nm	1 pA	550 pA	< 0.5	<0.5 s	4
					S		
ZnO/Spiro-	0 V	365 nm	5 nA	110 nA	0.16 s	0.20 s	5
MeOTAD			/cm ²	/cm ²			
ZnO/Cu ₂ O	0 V	405 nm	<20	24.90	1.6	1.8 ms	This work
			nA	μΑ	ms		

Table S1. The performance of ZnO-based photodetectors

photodetectors										
Materials	Bias	Detection	Photoc	ON/OFF	Rise	Fall	Reference			
		range	urrent	ratio	time	time				
ZnO/Cu ₂ O	0 V	405 nm	24.90	>1000	1.6	1.8	This work			
			μΑ		ms	ms				
Black-	0.2	640 nm	2 n A	>1000	1 mg	1 ms	6			
phosphorus	V	040 1111	2 IIA	/ 1000	1 1115	4 1115				
SnS_2	5 V	405 nm	<100	3.63	0.4 s	0.6 s	7			
			pA							
MoS_2	20 V	514 nm	0.1 nA	500	13 s	30 s	8			
MoO ₃	-	365 nm	25μΑ	2000	40 ms	-	9			

 Table S2 Performance comparison between the SZCPs and 2D materials-based

Reference:

- H. Zou, X. Li, W. Peng, W. Wu, R. Yu, C. Wu, W. Ding, F. Hu, R. Liu, Y. Zi and Z. L.
 Wang, *Adv. Mater.*, 2017, **29**, 1701412.
- 2 M. Chen, B. Zhao, G. Hu, X. Fang, H. Wang, L. Wang, J. Luo, X. Han, X. Wang, C. Pan and Z. L. Wang, *Adv. Funct. Mater.*, 2018, 28, 1706379.
- 3 W. Peng, X. Wang, R. Yu, Y. Dai, H. Zou, A. C. Wang, Y. He and Z. L. Wang, Adv. Mater., 2017, 29, 1606698.
- 4 Z. Zheng, L. Gan, J. Zhang, F. Zhuge and T. Zhai, Adv. Sci., 2017, 4, 1600316.
- 5 Y. Shen, X. Yan, H. Si, P. Lin, Y. Liu, Y. Sun and Y. Zhang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 6137-6143.
- 6 M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant and A. Castellanos-Gomez, *Nano Lett*, 2014, **14**, 3347-3352.
- 7 Y. Tao, X. Wu, W. Wang and J. Wang, J. Mater. Chem. C, 2015, 3, 1347-1353.
- 8 Y. R. Lim, W. Song, J. K. Han, Y. B. Lee, S. J. Kim, S. Myung, S. S. Lee, K. S. An, C. J.

Choi and J. Lim, Adv. Mater., 2016, 28, 5025-5030.

9 J. Liu, M. Zhong, J. Li, A. Pan and X. Zhu, Mater. Lett., 2015, 148, 184-187.