Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

ELECTRONIC SUPPLEMENTARY INFORMATION

Acid anhydride coated carbon nanodots: Activated platforms for engineering clicked (bio)nanoconstructs

Mariano Ortega-Muñoz, Paula Vargas-Navarro, Fernando Hernández-Mateo, Alfonso Salinas-Castillo, Luis FerminCapitan-Vallvey, Simona Plesselova, Rafael Salto-Gonzalez, M. Dolores Giron-Gonzalez, Francisco Javier Lopez-Jaramillo*and Francisco Santoyo-Gonzalez*

Table of Contents

1.	Experimental procedures	р.	1
2.	Figures	p.	2
3.	Tables	p. ′	10

1. Experimental procedures

Fluorescence quantum yield

Fluorescence quantum yield (FLQY) was estimated using quinine sulfate dissolved in 0.1 M H2SO4 as a standard (FLQYst = 0.54) and applyieng the following equation

$$FLQY = FLQY_{st} \left(\frac{I_{sm}}{I_{st}}\right) \left(\frac{OD_{st}}{OD_{st}}\right) \left(\frac{\eta^2_{sm}}{\eta^2_{st}}\right)$$

where I is the integrated emission intensity measured at the excitation maxima (454 nm and 326 nm respectively), OD denotes the optical density, η represents the refractive index. The subscript "sm" stands for sample and the subscript "st" indicates the standard fluorescence of a known fluorophore. The absorbance value of the carbon dot solution was restricted to <0.01, and integrated emission intensities of those solutions were recorded in a luminescence spectrometer.

Cell culture

CHO-k1 (ATCC CCL-61), Hela (ATCC CCL-2), RAW 264.7 (ATCC TIB-71) and CT26.WT (ATCC CRL-2638) cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum, 2 mM glutamine plus 100 U/mL penicillin, and 0.1 mg/mL streptomycin. Cell were seeded at 1.5 x 104 cells/well density in 48 well plates and incubated at 37 °C for 24 h to reach a cell confluence of 80–90%.

2. Figures

Figure S1. FTIR of the CA (green) and the resulting products from the thermolysis at 180 °C for 20 min (blue),1 h (magenta), 2 h (red) and 48 h (black). Insert, detail of the 1650-1850 cm⁻¹ region.

Figure S2. Evolution of the anhydride band at long times of thermolysis. Detail of the FTIR of samples heated at 180° C during 2 h (red), 20 h 40 min (magenta) and 10 h (brown).

Figure S3. Full XPS spectra (top) and high resolution (bottom) C 1s, O 1s and N 1s spectra of **AA-CNDs** (blue), **Ak-CNDs** (red) and **Az-CNDs** (green)

Figure S4. UV–Vis absorption & photoluminescence excitation/emission spectra of AA-CNDs(Na)

Figure S5.-Full XPS spectrum (top) and high resolution (bottom) S 2p and N 1s spectra of VS-CNDs

Figure S6. FIR of Az-CNDs (blue) and the glyco-CNDs resulting from the click reaction with alkynyl sugar

Figure S7. Citotoxycity assay. Cytotoxicity was evaluated in CHO-K1 (A), CT26wt (B) and Hela (C) cells at 0, 10, 50, 100 and 250 μ g/mL concentrations (bars from left to right for each sample). Results are reported as % viability based on the untreated control cells normalized to 100% viable. Results are expressed as means ± SEM (n=6). * p <0.05 vs 0 μ g/mL for each compound

Figure S8. Hemolysis assay. Hemolytic assay was carried out at 250 (A) and 500 μ g/mL (B) concentrations for 1, 3, 6 and 24 hours (bars from left to right for each sample). Results are expressed as means ± SEM (n=6).

Figure 9. Cellular uptake. (A) RAW264.7, (B) CT26.WT and (C) Hela cells were incubated with 250 μ g/mL CNDs derivatives for 6 hours and then cell uptake was visualized by confocal microscopy (representative images corresponding to maximum projections and Nomarsky images are shown) under conditions where no signals were detected in non-incubated cells. To quantitate cell uptake, fluorescence was measured and was normalized with protein concentration and the background fluorescence of non-incubated cells was subtracted. Results are expressed as means ± SEM (n=6). * p <0,05 vs AA-CNDs(Na).

3. Tables

Peak	AA-CNDs	Az-CNDs	Ak-CNDs	VS-CNDs
C 1s	68.03	57.19	44.34	64.93
O 1s	31.87	17.64	35.35	25.23
N 1s	-	18.24	1.66	4.38
Na 1s	-	5.29	17.49	1.11
S 2p	-	-	-	3.41
Cl 2p	-	1.16	0.61	-

Table S1.- Quantification (%atomic concentration) of the most significant peaks detected in clickable CNDs by XPS.

 Table S2. Elemental analysis of the clickable CNDs.

Sample	%C	%N	%Н
Az-CND	$\textbf{27.53} \pm \textbf{0.856}$	$\textbf{7.71} \pm \textbf{0.410}$	$\textbf{3.31} \pm \textbf{0.219}$
Ak-CND	17.37 ± 1.393	0.86 ± 0.047	$\textbf{2.34} \pm \textbf{0.184}$
VS-CND	39.65 ± 0.141	4.49 ± 0.163	$\textbf{6.12} \pm \textbf{0.049}$

Table S3. Quantification of the sugar coating byphenol-sulfuric acid method and rotatory power ofglyco-CNDs.

Sample	µmol sugar/mg glyco-CNDs	[α] _D
Az-CND@Man-Ak	1.3 ± 0.11	+23°
Az-CND@Lac-Ak	0.7 ± 0.10	+2°
Ak-CND@Man-Az	1.0 ± 0.04	+13º
AK-CND@Lac-Az	0.7 ± 0.09	+8°
VS-CND@GlcNAc-SH	_	-4°

Table S4. Fluorescence quantum yield (FLQY) using quinine sulfate as standard (QY=0.54) of glyco-CNDs and their precursors

Sample	FLQY(%)
AA-CNDs(Na)	4
Ak-CNDs	7
Ak-CND@Man-Az	4
AK-CND@Lac-Az	1
Az-CNDs	3
Az-CND@Man-Ak	3
Az-CND@Lac-Ak	2
VS-CNDs	3
VS-CND@GIcNAc-SH	4

Table S5. IC₅₀ of the glyco-CNDs

Compound	IC₅₀ (mg/mL)	IC₅₀ (uM)	IC _{sugar} /IC _{glyco-CNDs}
Met-Man		18000	1
Az-CND@Man-Ak	0.02	26.2	687
Ak-CND@Man-Az	0.015	14.9	1208
Lac		2300	1
Az-CND@Lac-Ak	0.02	13.9	165
AK-CND@Lac-Az	0.011	8.1	284
GIcNAc		335000	1
VS-CND@GlcNAc-SH	3.35	4300	78