Electronic Supplementary Information (ESI)

Mesoporous N-doped graphene prepared by soft-template method with

high performance in Li-S battery

Tianyu Tang, a Teng Zhang, a Wei Li, a Xiaoxiao Huang, a Xiaobai Wang, a Hailong Qiu, a Yanglong Hou*a

^{a.} Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKLMMD), Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China. E-mail: hou@pku.edu.cn.

Supplementary Figure

Fig. S1. TEM images of (a) the reduced GO-PF127 composite, (b) NG sheets before annealing. SEM images of (c) the reduced GO-PF127 composite, (d) NG sheets before annealing.

Fig. S2. FT-IR spectra of the p-rGO, NG, NGM-50-PF127 and PF127.

Fig. S3. (a) Nitrogen adsorption-desorption isotherms, and (b) pore size distribution of the NGM-50-700 and NGM-50-700-S.

Sample name	Surface area (m^2/g)	Pore volume (cm ³ /g)
p-rGO-700	353.74	1.50
NG-700	563.34	1.64
NGM-50-700	958.72	2.39

Table S1. Brunauer–Emmett–Teller (BET) specific surface area and pore volume of p-rGO-700, NG-700 and NGM-50-700.

Fig. S4. The thermogravimetric analysis (TGA) of NG, PF127 and NGM-50-PF127.

It can find that the mass loss of NG after TGA test is about 17%. If the mass ratio of NG is x in NGM-50-PF127, 0.17x + 0.93(1-x)=0.47, x=0.61. As a result, the contribution of graphene species to the mass change in TGA test is about 0.61*0.17=0.1037.

Fig. S5. XPS survey spectrum of p-rGO-700 and NG-700.

Fig. S6. The high resolution of N 1s spectrum of the NG-700.

Sample name	C (at%)	N (at%)	O (at%)
p-rGO-700	99.07	0.15	0.78
NG-700	95.32	3.51	1.17
NGM-50-700	94.28	4.80	0.92

Table S2. The content of C, N and O in p-rGO-700, NG-700 and NGM-50-700 by XPS.

Fig. S7. XPS analysis of NGM-50-700-S (a) S 2p spectrum, (b) C 1s spectrum.

Fig. S8. Raman spectra of the p-rGO-700, NG-700 and NGM-50-700

Fig. S9. (a) The lithium polysulfides solution (Li_2S_6) , (b) the lithium polysulfides solution (Li_2S_6) containing NGM-50-700 after 12h.

Fig. S10. The high resolution of Li 1s spectrum of the NGM-50-700/Li $_2S_6$.

Fig. S11. The sulfur loading of the (a) p-rGO-700-S, NG-700-S, NGM-50-700-S, and (b) NGM-50-700-SH.

Sample name	Sulfur content (wt%)
p-rGO-700-S	74.1
NG-700-S	69.2
NGM-50-700-S	71.2

Table S3. The sulfur content of the p-rGO-700-S, NG-700-S, NGM-50-700-S.

Fig. S12. (a) STEM image of NGM-50-700-S, (b) elemental mapping of NGM-50-700-S.

Fig. S13. (a) the CV profile of p-rGO-700-S and NG-700-S at 0.1 mV s⁻¹, (b) cycling performance of p-rGO-700-S and NG-700-S at 0.46 A g^{-1}_{TE} .

Fig. S14. The voltage profiles of NGM-50-700-S at rates ranging from 0.28 to 1.86 A g^{-1}_{TE} .

Fig. S15. The cycling performance of NGM-50-700-SH with sulfur loading mass of 5 mg cm⁻² at 0.81 A g_{TE}^{-1} .

Cathode	Cathode	Volumetric	Current density	Cathode energy	Deference
material	density	capacity		density (Wh L^{-1})	Reference

	$(g \text{ cm}^{-3})$	$(mAh cm^{-3})$	(Ag^{-1}_{sulfur})		
Graphene monolith/S	1.16	401	0.84	852	[1]
3D Al foam/CNT/S	N/A	299	0.17	643	[2]
NiFe ₂ O ₄ /S	1.33	1282	0.17	~2690	[3]
CNT/S	0.64	668	0.17	~1430	[3]
PCNF/S	N/A	317	0.17	~680	[4]
HDGS/S	1.07	233	0.84	~490	[5]
PVP-hollow S sphere	N/A	375	0.84	~788	[6]
3D NG@S- CNT	0.67	391	0.84	850	[7]
rGO-VS ₂ /S-64	1.02	350	0.17	~740	[8]
rGO/S-64	0.35	195	0.17	~410	[8]
CNTs– S/300HOPT@ G/300HOPT	1.23	498	0.34	~1030	[9]
NOME	0.60	356	0.84	719	This work
1101/1-5	0.96	503	0.84	1008	This work

Table S4. Comparison of cathode energy density with several reported works.

References

Li, H.; Tao, Y.; Zhang, C.; Liu, D.; Luo, J.; Fan, W.; Xu, Y.; Li, Y.; You, C.; Pan, Z.-Z.; Ye, M.; Chen, Z.; Dong, Z.;
 Wang, D.; Kang, F.; Lu, J.; Yang, Q., Adv. Energy Mater. 2018, 8 (18), 1703438.

[2] Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhu, L.; Yang, S.-H.; Liu, Y.; Zhang, H.-W.; Zhu, W.; Wei, F.; Zhang, Q.,

J. Power Sources **2014,** *261,* 264-270.

- [3] Zhang, Z.; Wu, D.; Zhou, Z.; Li, G.; Liu, S.; Gao, X., Sci. China Mater. 2019, 62 (1), 74-86.
- [4] Qie, L.; Manthiram, A., Adv. Mater. 2015, 27 (10), 1694-1700.
- [5] Zhang, C.; Liu, D.; Lv, W.; Wang, D.; Wei, W.; Zhou, G.; Wang, S.; Li, F.; Li, B.; Kang, F.; Yang, Q., *Nanoscale* **2015**, *7* (13), 5592-5597.
- [6] Li, W.; Zheng, G.; Yang, Y.; Seh, Z. W.; Liu, N.; Cui, Y., *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110* (18), 7148-7153.
- [7] Zhai, P.; Huang, J.; Zhu, L.; Shi, J.; Zhu, W.; Zhang, Q., *Carbon* **2017**, *111*, 493-501.
- [8] Cheng, Z.; Xiao, Z.; Pan, H.; Wang, S.; Wang, R., Adv. Energy Mater. 2018, 8 (10), 1702337.
- [9] Xiao, Z.; Yang, Z.; Zhou, L.; Zhang, L.; Wang, R., ACS Appl. Mater. Interfaces **2017**, *9* (22), 18845-18855.