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Monitoring the growth of Ag NPs by LSPR spectra

Figure S1 LSPR spectra of GND-supported Ag NPs as a function of precursor AgNO3 

concentration (a) and irradiation time (b). The intensity of LSPR peak increases but show little 
shift with the irradiation time, indicating the increasing number of Ag NPs during photoreduction, 
instead of particle size. 



The effect of GND template on the loaded Ag NPs

Figure S2 (a) The TEM size histogram of GND-Ag NPs. GNDs are synthesized by using carbon 
fiber (black) and GO (red) as starting materials. The mean values and standard deviations are 
shown inset. (b) LSPR spectra of GND-Ag NP solution. GND types: carbon fiber based (red); GO 
(cyan) based. 



Estimation of surface density of deposited GND-Ag NPs
A direct method for calculating the surface concentration, Γ (particles·cm-2), is to 

measure the number of GND-Ag NPs (N) present on a quartz substrate of known 

surface area (SA). We assume the GND-Ag NPs form a tightly packed well-ordered 

monolayer on quartz substrate, and then the surface density is defined as: 

                   (1) 
Γ (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∙ 𝑐𝑚 ‒ 2) =

𝑁(𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠)

𝑆𝐴(𝑐𝑚2)

with the substrate surface area, SA, equal to 4.909 cm2 (2.5 cm diameter quartz). In 

addition, the measurable mass of deposited GNDs-Ag NPs, is considered as the 

product of the mass of single particle, m0, and the particle numbers, N:

                             (2)𝑚 = 𝑁 ∙ 𝑚0

The GNDs-Ag nanoparticle is briefly treated as quasi-sphere with a radius (rAg) of 1.6 

nm and specific gravity (ρAg) of 10.5 g·cm-3. Then the eq(2) can be written as:

                   (3) 
𝑚 = 𝑁 ∙ 𝜌𝐴𝑔 ∙

4
3

𝜋𝑟 3
𝐴𝑔 = 𝛾𝑖 ∙ 𝑉

where γi is the mass concentration and the V is the pipetted volume of the GND-Ag 

NP solution. During the casting process, the γi in the range of 4-50 µg·mL-1, and the V 

is 300 µL. Finally, the surface density can be determined as:

              (4)Γ (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∙ 𝑛𝑚 ‒ 2) = 8.893 × 1010𝛾𝑖

Figure S3 The AFM images of GND-Ag NPs on quartz when casting from increasing concentration 
of solution. (a) 4 µg/mL; (b) 8 µg/mL; (c) 12 µg/mL; (d) 50 µg/mL.



PL quenching of GNDs by the loaded Ag NPs
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Figure S4 PL spectra of the GNDs and AgNO3 mixture at increasing irradiating time, indicating 
the growing Ag loadings induce increasing PL quenching of the GNDs. The concentrations of 
GNDs and AgNO3 solution are 0.1 mg/mL and 1 mg/mL, respectively. 254 nm UV lamp (8 W) was 
adopted.



Morphologies of spun CP films

Figure S5 AFM images of the surface morphologies of spun CP films on quartz. (a) F8BT; (b) PFO; 
(c) MEH-PPV.



GND-Ag NP surface density dependent PL spectra
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Figure S6 Steady PL spectra of CP films spun on top of GND-Ag NP monolayer with various 
surface densities of GND-Ag NPs, ΓGND-Ag. (a) PFO, λex = 350 nm; (b) F8BT, λex = 420 nm; (c) MEH-
PPV, λex = 420 nm.
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Figure S7 Transient PL decay curves of CP films spun on top of GND-Ag NP monolayer with 
various surface densities of GND-Ag NPs, ΓGND-Ag. (a) PFO, λem = 450 nm; (b) F8BT, λem = 550 nm; 
(c) MEH-PPV, λem = 600 nm.



CP film thickness dependence of the PL lifetime

Figure S8 (a-c) AFM images of the surface morphologies of spun F8BT films with various 
thickness, h. (a) 2 nm; (b) 23 nm; (c) 36 nm. (d) Transient PL decay curves of F8BT films with 
various thicknesses. (e) PL lifetime of F8BT films as a function of film thickness.

Table S1 The CP film thickness dependence of PL lifetime.

h (nm) PL lifetime (ns)

PFO 3±0.6 0.58±0.06

15±3.8 0.55±0.06

39±9 0.52±0.03

F8BT 2±0.8 1.03±0.05

23.0±6.79 1.03±0.06

36±10.2 0.98±0.06

MEH-PPV 20±1.3 1.45±0.14

25.8±5.3 1.11±0.04



Table S2 Quenching distances reported for various CP based energy transfer system.

Donor polymer Quencher Quenching distancea (nm) Ref

PFO PPV 6.3 [1]

PFO hole 2.7 [2]

PFO tetraphenylporphyrin 4.2 [3]

PFO GND-Ag NPs 5.9-6.3 This work

F8BT F8TBT 5.32 [4]

F8BT MoO3 4.5 [5]

F8BT GND-Ag NPs 2.5-3.2 This work

MEH-PPV C61PCBM 3.4 [6]

MEH-PPV GND-Ag NPs 8.3-11.6 This work

aThe quenching distance corresponds to the Förster radius (R0) calculated from FRET theory when the non-metal 

quencher is used, while corresponds to the characteristic distance d0 calculated from PRET theory using GND-Ag 

NPs as quencher in this work.



Measurements of (PDDA/PSS)n/PDDA spacer thickness
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Figure S9 Absorption spectra of assembled (PDDA/PSS)n/PDDA layer with the integer n = 0 to 8. 
Inset shows the optical density as a function of the number of PDDA/PSS layer monitored at 225 
nm.



Figure S10 The thickness of (PDDA/PSS)n/PDDA layer with the n = 0 to 8 was measured using an 
AFM. The film was scratched with a wood stick and the step height along several scratches was 
measured. AFM images of scratch layer border with n = 4 (a) and 7 (b) show above. (c) The 
measured thickness of self-assembled film as a function of number of layers. The red line 
represents the linear fit equation y = 0.99x, indicating a self-assembled layer is about 1 nm.



Absorption spectra of the bilayer structure
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Figure S11 Absorption spectra of the bilayer structure of GND-Ag NPs/[(PDDA/PSS)n/PDDA]/F8BT   
with the integer n = 0 to 6, where the Γ-value was set to be 4.410-2 nm-2 and the hCP was 2 nm.



Spacer thickness dependent transient PL spectra

Figure S12 Transient PL decay curves of the bilayer structure of GND-Ag 
NPs/[(PDDA/PSS)n/PDDA]/F8BT with the spacer thickness ranging from 0 to 6 nm, where the Γ-
value was set to be 4.410-2 nm-2 and the h was 2 nm.

.



Photoelectrochemical study
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Figure S13 Photocurrent density versus time curves of F8BT films on ITO (black) and GND-Ag 
NPs (blue) photoanodes in sat. KCl as reference electrode, Pt wire as counter electrode and the 
prepared films with an active area ca. 0.12 cm2 as working electrode. Light source: 300 W Xe 
lamp (100 mW∙cm-2); Scanning rate: 20 mV∙s-1.
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