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S1 Details of the numerical methods

S1.1 Brownian Interactions

Core-Shell Cross-linked Polymer NP Model

We model the polymer microstructure as a fixed number of strands attached to a core, which mimics the experi-
mentally inferred architecture for this material, where each strand is modeled as connected segments of freely jointed
chains (FJCs). The core radius is set to a = 10 nm following the experimental estimates of [1]. We set the size of
each bead in the arms to be the same as that of the core, i.e., a = 10 nm. The initial microstructure is a unit star
polymer with 25 arms attached to a core, with each arm modeled by beads connected through four links in series;
that is, each link connecting two adjacent beads in an arm is modeled as a Kuhn spring. The model is identical
and is adopted from the work of Sarkar et. al. [2], where the stiffness of each link and the equilibrium distance is
determined using a freely jointed chain model. The molecular weight of a dextran monomer is 162 Da and for a
typical molecular weight of 70 kDa of the dextran polymer used to synthesize the NP, the number of monomers per
arm is 70,000

162 and the number of monomers per bead is N = 70,000
4×162 . If the number of Kuhn’s segments per bead is Nk

and size of each Kuhn’s segment is bk, we impose Nkbk = Nb, where b is the size of each monomer. For dextran, bk
is 0.44 nm and the size of the monomer (b) is 1.5 nm using which we calculate the stiffness (ks) of the links between
beads as derived from the FJC model, i.e., ks = 3kBT

Nkb2k
. We also model the stiffness of the coarse-grained crosslinks

to be identical to the stiffness of each link. We mimic the experimental protocol to obtain a relaxed structure of the
polymer assembly; details are available in [2]. For each NP stiffness we model 4− 5 configurations (replicas) and then
carry out Brownian dynamics simulations as described below in each of the replicas. The error bars of the reported
quantities are determined through the standard deviations of the five replicas.

The equations of motion of a system of connected beads with mass of m, radius of a and velocity of v are solved
in a fluid with velocity vo = ṙ and viscosity µ, and the resulting force balance for one bead is given by,

m
dv

vt
+ 6πµa (v − ṙ) = Fbr + Fnbr. (1)

Here, ṙ = r ·∇u (∇u represents the velocity gradient from external forces), Fbr represents Brownian forces and Fnbr is
non-Brownian (deterministic) forces due to inter-bead interactions, due to margination, due to glycocalyx layer, and
due to NP-cell adhesion. We consider time scales larger than inertial relaxation time (i.e., m

6πµa ). Following Ermak

and McCammon [3] we reduce Eq. (1) for time greater than time scale of internal relaxation (i.e., t� m
ξ ) to:

∆ri = ṙi∆t+
1

ξ

(
Fbr
i + Fnbr

i

)
∆t, (2)

where ξ = 6πµa is the friction factor and ri and Fi denote the position and force associated with particle i, respectively.
The Brownian forces are determined by diagonalizing the mobility tensor. We consider unconstrained Brownian forces

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2019



2

that are δ-correlated and represented as a white noise process between time t and t+ ∆t:

〈Fibr(t)〉 = 0 (3)

〈Fi,br(t)Fj,br(t′)〉 = 2kBTξδijδ(t− t′)I. (4)

Here, i and j are indices representing particular beads, kB is the Boltzmann’s constant, T is temperature, I is the unit

second-order tensor, and δ(t − t′) is the Dirac delta function. We scale time t with relaxation time of diffusion a2

Do

(where Do is the unconstrained diffusivity of a Brownian particle which is kBT
ξ ), r with a, and F with kBT

a .

Bead-to-bead hydrodynamic interactions

The hydrodynamic mobility tensor is described by adopting the Ronte-Prager-Yamakawa tensor [4, 5] to introduce
the effect of bead-to-bead hydrodynamic interactions:

MHI,ij =
1

6πµa
~I for i = j ,

=
1

8πµr

[(
1 +

2a2

3r2

)
I +

(
1− 2a2

r2

)
rr

r2

]
for i 6= j, r ≥ σ ,

=
1

6πµa

[(
1− 9r

32a

)
I +

3r

32a

rr

r2

]
for i 6= j, r < σ ,

(5)

where i and j are indices of a pair of beads and σ is the interparticle distance (σ = 2a). r = rij is the relative position
vector between beads i and j, while rr

r2 is the product of normalized vectors. Because of the long range of the mobility
tensor, i.e., r � a, Eq. (5) decays slowly as 1

r .

Effect of wall-mediated interactions

Near the endothelial surface the beads exhibit an anisotropic hindered Brownian motion due to hydrodynamic
effects. The modified diffusion coefficient, in the directions parallel and normal to the surface, is expressed in terms of
their respective mobilities. The NP exerts a force on the Newtonian solvent due to bead motions. We account for the
effect of hydrodynamic interactions on the NP near a wall via decreased mobility of beads of the NP and increased
drag due to the presence of other NPs. The effect of the wall is translated to the self-mobility shown in Eq. (5).
Faxen and Angew [6] showed that a spherical particle, moving parallel to a rigid planar wall, experiences a decrease
in mobility by a factor:

β‖ = 1− 9

16

(
a

y

)
+

1

8

(
a

y

)3

− 45

256

(
a

y

)4

− 1

16

(
a

y

)5

(6)

where, a
y > 2. For the present case due to repulsion from the wall and glycocalyx layer, the distance between beads

and the wall will be always larger than 2a. Wakiya [7] showed that using the method of reflections as applied to
two spherical particles in the presence of a planar wall, a spherical particle moving towards the wall experiences an
increased drag which is given by:

β⊥ = 1− 9

8

(
a

y

)
+

1

2

(
a

y

)3

− 2

8

(
a

y

)5

. (7)

It must be noted that in our simulations, the hydrodynamic interactions between one bead and the wall are taken
into account through the use of Eqs. (6) and (7) and the simultaneous effect of HI between multiple beads and the
wall is presently ignored, as the size of the bead is smaller than the instantaneous distance of its center from the wall.

Effect of concentration

Effects of the presence of other NPs are considered by including interactions of the periodic images through the
Ewald sum method described by Beenakker [8]. The resultant velocity is a product of the overall mobility from the
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Ewald sum and the forces acting on the bead, i.e.:

vi =

N∑
j=1

∑
l

MHI,ij
(
rijl

)
· Fj , (8)

where rijl is the distance between the periodic images of the box and l is comprised of components of two dimensional
lattice vectors expressed as l = (l1L, l2L) and L is the length of the simulation box.

To include the effect of other beads in the mobility of a test bead, we adopt a quasi-2D Ewald sum of the mobility
tensor shown by Bleibel [9]. The pair-wise mobility tensor is then defined by:

6πµavi =6πµa

N∑
j=1

MHI,ij
(
rij
)
· Fj

+

(
1− 3

2
π−1/2aα− 2

3
π−1/2a3α3

)
Fi

+
∑
l

(l 6=0)

N∑
j=1

M(1)
(
rij + l

)
· Fj

+
1

V

∑
k

k 6=0

N∑
j=1

M(2) (k) cos
(
k · rij

)
· Fj ,

(9)

where M(1) & M(2) are contributions from periodic images along ‘1’ and ‘2’ directions and are defined in [9]. We nu-
merically check the convergence of the mobility tensors to determine the number of boxes and the value of convergence
parameter α. The mobility tensor converges for 25 periodic boxes with α = 0.125/a.

S1.2 Non-Brownian Interactions

In addition to Brownian forces, the beads experience some non-Brownian forces. The illustration shown in Fig. 1
highlights the major components of the forces due to non-Brownian interactions, which will be described in the
following sections.

(a)

L 
Zc 

R 

(b) (c)

FIG. 1: Schematic of (a) the NP bead near a glycocalyx layer, (b) deformable NP under margination potential from red blood
cells (RBCs), (c) deformable NP tethered to endothelial surface.

Glycocalyx mediated interaction of NP with endothelial cells

NP adhesion is subject to glycocalyx resistance and influenced by flexural rigidity of receptors and receptor-ligand
bond stiffness. The glycocalyx has a significant role in modulating NP binding to endothelial cells by imposing
an energy barrier. We employ an equilibrium model to determine the force acting on each bead due to glycocalyx
mediated interaction of functionalized NP with endothelial cells [10]. Fig. 1(a) shows a bead of the NP immersed in
the glycocalyx layer. Following Agrawal and Radhakrishnan [10], the resistance offered by the glycocalyx on each
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bead is defined by a harmonic energy of interaction. The ensuing force exerted by the glycocalyx layer on the bead
is obtained as the negative gradient of the energy of interaction along the perpendicular direction:

Fglyx = −dEglyx

dy
= πkglyxa

3

[
Lglyx − y

a
+ 1

]2

. (10)

Eglyx is energy of interaction, y is the perpendicular coordinate of the center of the bead, Lglyx is the thickness of the
glycocalyx, and kglyx is the glycocalyx stiffness.

Margination of NP by RBC

Larger particulates in suspension such as RBCs can modulate carrier interactions with the endothelium. We adopt
the DDFT approach introduced by Yu et al. [11] to include the effect of inertial margination due to flow on the
spheres as shown in Fig. 1(b). Two different ensemble averages, i.e., the grand canonical (µV T ) and the canonical
(NV T ) ensembles, were considered in [11] to represents conditions common in experiments. If the chemical potential
is controlled in the equilibrium state, the grand canonical ensemble is used, whereas the canonical ensemble is invoked
when the numbers of particulates are held fixed, depending on the physical system. The flow profiles are considered to
be parabolic for dilute suspensions and a blunted parabolic for denser suspensions. In both ensembles, the expression
for the mean-field DDFT equation in the presence of convective flow and external potentials is defined as:

∂ρRBC(r, t)

∂t
+∇ · ρRBC(r, t) 〈v1〉1 = ∇ ·

〈Ds〉1
kBT

· ρRBC(r, t)∇δF [ρRBC(r, t)]

δρRBC(r, t)
, (11)

where, 〈〉1 denotes a conditional average with the position of one particle held fixed, v1 is the velocity of the chosen
particle, Ds is the self-diffusivity tensor for a particle and F is the Helmholtz free energy defined as a function of the
one-body particle density, i.e., F [ρRBC(r, t)] = F id[ρRBC(r, t)] +F ex[ρRBC(r, t)] +

∫
V
Uext(r, t)ρ

RBC(r, t). Here, F id is

the ideal gas free energy, i.e., F id = kBT
∫
V
ρRBC(r, t)[ln(ρRBC(r, t)Λ3)− 1]dr with Λ being the thermal de Broglie

wavelength of the particle, Uext is the external potential energy, and F ex denotes the excess Helmholtz free energy.
Considering the steady-state behavior of the system, the DDFT equation for ρRBC(r) under fixed particle number

condition is expressed as:

ρRBC(r) = ρbexp

{
− 1

kBT

δF ex[ρRBC(r)]

δρRBC(r)
+

1

kBT

δF ex(ρb)

δρb
− Uext(r)

kBT
+

∫ r

0

flift(r
′)

kBT
dr′
}
, (12)

where, ρb is the particle number density in the bulk and flift is the lift force acting on a chosen particle. The
margination potential felt by each bead of the NP at every position r′ is defined as:

ΦRBC(r′) =

∫
V

ρRBC(r)〈φ(r′, r)〉dr, (13)

where ρRBC is the density of RBCs at some distance r and φ represents the interaction of a given spherical particle
with RBCs using the following Weeks-Chandler-Andersen (WCA) type potential:

φ(r, r′) = 4ε

[(
σ

r − r′

)12

−
(

σ

r − r′

)6

+
1

4

]
. (14)

Here, ε = 0.7kBT and σ = a+b
2 with b being the radius of RBC, denote the energy and length units, respectively. The

margination potential defined in Eq. (13) comes from hydrodyanmic origin at the steady-state as clearly demonstrated
in [11] in the DDFT approach. The force due to margination, i.e., Fmarg = −∇ΦRBC is stochastically exerted by
passing RBCs, which migrate to the axis of flow and varies with distance from the wall. We include the margination
force on the NP, based on the NP effective radius, as an external non-Brownian force term.

Finally the lift force felt by a given spherical NP with radius of rs in the region of the parabolic flow of length L is
determined by Yu et al. [11]:

Flift(y)

kBT
= RePeβ⊥

5

288
(
rs
L2

)(1− y

L
)(22− 73

y

L
). (15)

Here, RePe is product of the Reynolds number and Peclet number, and β⊥ denotes the wall-induced resistivity factor,
see Eq. (7).
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Inter-bead interactions and adhesion of functionalized NP to the cell surface

Agrawal and Radhakrishnan [10] have proposed a computational model for NP adhesion to endothelial cells and
compared predictions with experimentally measured binding parameters using molecular and energetic analyses to
quantify the NP binding process. Following Sarkar et al. [2], the interaction between adjacent connected beads is
considered through a harmonic potential:

U s =
1

2
ks (r − ro)2

, (16)

where, ro is the equilibrium bond distance and is set to 2a. The spring restoring forces (F s) are derived by taking
the spatial derivative of the segmental chain free energy.

Excluded volume effects of the beads are considered as a purely repulsive WCA potential [12]:

UWCA = 4ε

[(σ
r

)12

−
(σ
r

)6

+
1

4

]
. (17)

Here, ε
kBT

is the scaled interaction strength with ε = 0.7kBT and σ is the excluded volume radius. The cut-off radius

for WCA potential is set to rC = 2
1
6σ.

Anti-ICAM (antibody specific for ICAM-1) functionalized NPs bind to target antigens on the cell surface. We
model the binding of each bead of a deformable NP coated with antibody as a detachable spring that is connected
to the ICAM-1 receptors diffusing on the surface. Despite being a coarse-grained model, the molecular nature of the
receptor-ligand interactions is retained, which allows us to precisely compute the entropic contributions to binding
efficacy , as well as to gauge how the ability of antibodies to bind to the antigens is modulated by molecular flexure,
see [13] for details. The binding interaction between a ligand i and a receptor j is defined using the Bell potential:

UBell(dij) =
1

2
keff

(
dij − d∗

)2
, (18)

for dij ≤ d∗ and 0 for dij ≥ d∗. Here, dij is the distance between the tip of the chosen receptor and the center of the
bead supporting the ligand and d∗ is the cutoff distance for binding interaction. d∗ = a+ do, where do is the length
of the antiICAM molecule. In the description above, the effective spring constant is given by a combination of the
molecular stiffness surrounding the receptor-ligand bond [13, 14] and that of the polymer segment represented by a

bead. That is keff = ks×kICAM−antiICAM

ks+kICAM−antiICAM with kICAM−antiICAM ' 1 N/m being the spring constant of a receptor-ligand
bond.

Brownian Dynamics (BD)

In the BD method, we include the inhomogeneous nature of the system due to wall effects by considering the
distance dependent changes to the mobility. Following Ermak and McCammon [3] we introduce a drift velocity given

by
∂Di

2

∂ri2
along the perpendicular direction 2.

We modify Eq. (1) using the mobility tensor shown in Eq. (5). We include all non-hydrodynamic forces such as
spring restoring force (Fs

i), force due to excluded volume effect (FWCA
i ), force due to NP adhesion to the cell surface

(Fadh
i ), force due to glycocalyx layer (Fglyx

i ), and force due to margination of RBCs (FRBC
i ). The displacement due

to Brownian movement is weighted with the resultant diffusion tensor obtained from the Rotne-Prager-Yamakawa
(RPY) tensor and is given by:

∆ri
∆t

= M ·
(
FWCA
i + Fs

i + Fadh
i + Fglyx

i + FRBC
i

)
+
√

2B · dW. (19)

Here, W represents the matrix of values of a Gaussian stochastic process with zero mean and unit variance, and B is
a weight factor which is calculated from M using:

M = B ·BT . (20)

We follow the Cholesky decomposition of the Rotne-Prager-Yamakawa tensor to compute B. Since the Rotne-
Prager-Yamakawa tensor is positive definite, the Cholesky decomposition is numerically stable. The details of the
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TABLE I: Details of the coarse-grained model of NP

Property Symbol Value

Number of cores Nc 1

Bead radius a 10 nm

Number of beads in an arm Nb 4

Arms attached to a core f 25

Molecular weight of Dextran monomer Mmonomer 160 Da

Molecular weight of Dextran polymer Mpolymer 71 kDa

Size of each Kuhn segment bk 0.44 nm

Size of monomer b 1.5 nm

Number of monomers per bead N 108

Number of Kuhn segments Nk 368

Stiffness of spring between beads ks 1.74329×10−4 J
m2

Glycocalyx height Lglyx 100 nm

Glycocalyx stiffness kglyx 3.9×109 J
m4

antigen length Lant 19 nm

antibody length Lab 15 nm

number of antigens Nant 2000

number of antibodies per NP Nab 162

system temperature T 300 K

model and methods are given in [2]. The bond stiffness for cross-links are kept the same as that of the stiffness of
the inter bead springs. We report the number of cross-links as a percentage based on the number of bonds. The
detailed parameter sets used in our model are summarized in Table I. It must be noted that in the calculation of the
margination potential due to to blood particulates such as RBCs, the hydrodynamic interactions between RBCs and
individual bead can be taken into account explicitly at the RPY level [15].

S1.3 Analysis of simulation

Diffusivity, Radius of gyration and shape of NP

We compute the radius of gyration based on bead positions. [2] showed that, when there is no confinement effect,
the radius of gyration of the polyemric NP decreases with increasing the NP stiffness. The NP at a distance h� O(a)
(from the wall) is not effected by any other forces. To test our hypothesis we compute eigenvalues of the radius of
gyration matrix which is defined in terms of bead positions:

G =
1

N

N∑
i=1

(
ri − rcm

) (
ri − rcm

)
, (21)

where cm denotes center of mass of the NP. Eigenvalues (λi (i = 1, 3) ) of G denote the characteristic size along three
orthogonal directions. The radius of gyration is then defined as:

R2
g =

3∑
m=1

λm. (22)

We further compute the shape of the NP, given by:

S =
27〈
∏3
i

(
λi − λ̄

)
〉

〈
(∑3

i λi

)3

〉
, (23)

where λ̄ = 1
3

(∑3
i λi

)
. Bishop and Michels [16] have showed that S varies from −0.25 to 2, where the change in sign

from ‘-ve’ to ‘+ve’ signifies an oblate to a prolate shape change.
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Structure factor

The eigenvalues of the radius of gyration tensor provide information on the shape of the NP. To quantify the
structure of the NP, we compute the structure factor, defined as:

S(k) = 〈 1

N

∣∣∣∣∣∣
N∑
j=1

exp
(
−ik · rj

)∣∣∣∣∣∣
2

〉, (24)

where k is the wave vector, rj represents the position of bead j, and the average represents an average over the
trajectory. Typically, we choose k = (k, 0, 0) and plot S(k) against k1. The S(k1) at large k1 provides information
about NP internal structure, while S(k1) at the small k1 characterizes the overall packing of NPs.

Configurational entropy using quasi-harmonic analysis

Following Carlsson and Aqvist [17] and Balsera et al. [18], we compute the configurational entropy using a principal
component analysis of the covariance matrix associated with coordinate fluctuations. In the analysis, the fluctuations
about orthogonal degrees of freedom of the beads are treated as being generated by independent harmonic oscillators
and the thermodynamic conformational entropy is calculated as a sum of these independent harmonic oscillators. The
covariance matrix of the 3N Cartesian coordinates with N being the number of beads of the NP is given by:

Bij = 〈(ri − 〈ri〉) (rj − 〈ri〉)〉 . (25)

Here Bij is the symmetric covariance matrix, ri represents the coordinate of the ith degree of freedom, where i =
1, ..., 3N . In these calculations, three eigenvalues (≈ 0) correspond to translation about the center of mass, three
eigenvalues (≈ 0) correspond to rotation about center of mass, and the remaining 3N − 6 correspond to vibrational
motions. These frequencies about the principal directions are computed by solving the equation:

det

(
m

1
2Bm

1
2 − kBT

ω2
I

)
= 0. (26)

Here, ω is the angular frequency and m is the mass matrix with the masses of the bead of NP on the diagonal and
all off-diagonal elements equal to zero. The quasi-harmonic entropy is then calculated from the frequency obtained
from Eq. (26) using the relationship:

Sqh = kB

∑
i

[
h̄ωi/kBT

exp(h̄ωi/kBT )− 1
− ln [1− exp(−h̄ωi/kBT )]

]
, (27)

where h̄ is the Planck’s constant divided by 2π and ωi is the set of angular frequencies obtained by solving Eq. (26).
The vibrational entropy of NP upon binding is computed from Eq. (27) where the eigen modes of internal vibrations

are computed using a principal component analysis of the covariance matrix of configurational fluctuations captured
in the BD trajectories (Eq. (25)). The covariance matrix for bead position fluctuations are corrected for removal of
the translational and rotational movement contributions. A similar procedure is followed for conditions where the NP
is away from the wall.

S1.4 Numerical solutions of the Fokker-Planck equation

We consider the steady-state behavior of the system and rewrite the Fokker-Planck equation, in terms of dimen-
sionless variables:

A(y)
d2c

dy2
+B(y)

dc

dy
− E(y)c = 0. (28)

where A(y) = β⊥, B(y) = dA(y)
dy −F (y)A(y), E(y) = dA(y)

dy F (y)+A(y)dF (y)
dy , and F (y) = Flift(y)+Fmarg(y)+Fglyx(y).

Numerical solutions to the second-order partial differential equation with boundary conditions corresponding to a
boundary value problem (i.e., Eq. (28)) are obtained using a finite difference method. By invoking the central
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difference approximations for the concentration term we have reduced our ordinary differential equation for N number
of nodes to a system of N algebraic equations which is given by

[A(yn)− ∆y

2
B(yn)]cn−1 − [2A(yn) + ∆y2E(yn)]cn + [A(yn) +

∆y

2
B(yn)]cn+1 = 0. (29)

If aij is the ith row and jth column entry of a matrix with square coefficients, then the three non-zero diagonals
along a row are:

an,n−1 = A(yn)− ∆y

2
B(yn) , (30)

an,n = −[2A(yn) + ∆y2E(yn)] , (31)

an,n+1 = A(yn) +
∆y

2
B(yn), (32)

while all other entries of aij are zero. To account for the boundary conditions, we have altered non-zero values of aij
in the first and last rows of the matrix, one at y1 and the other at yN, by applying the following conditions:

dc

dy
|y=y1 = 0 , (33)

c(yN) = c0. (34)

The solutions are provided in Fig. 2.

S2 Details of the experiment

S2.1 NP characterization and targeting antibody loading

Fluorescein isothiocyanate (FITC) labeled polystyrene spheres (PS beads) of 200 nm diameter and non-labeled 8
µm PS beads were purchased from Polysciences (Warrington, PA). All other reagents were from Sigma Chemical
(St. Louis, MO) unless otherwise mentioned. Rhodamine-dextran lysozyme polymeric NPs were synthesized using a
method adopted from a previous study [19], described in short here: Rhodamine labeled Dextran from Leuconostoc
ssp and Lysozyme were dissolved (1 : 1) in water; pH of the solution was adjusted to 7 − 8 using 0.1 N sodium
hydroxide and was lyophilized. The lyophilized powder was spread out on a glass surface and kept in a desiccator
containing saturated KBr solution to react at 60◦C under 79% relative humidity for 18− 24 h. The reacted powder
was reconstituted in water (5 mg/ml); the pH was adjusted to 10.7 (isoelectric point of lysozyme) using 0.1 N sodium
hydroxide, and the solution was heated at 80◦C for 30 min. Once synthesized, polymeric NPs were purified via
centrifugation using Amicon Ultra-0.5 ml centrifugal filter devices with a 100 kDa molecular weight cutoff (Millipore,
Billerica, MA), using the directions of the manufacturer (14000 g for 10 min to filter off free dextran and lysozyme
and 1000 g for 2 min to recover retained polymeric NPs) to which an oxidizing agent (0.01 M NaIO4), 25 wt. percent
NaCl and deionized water (to bring up volume to 1 mL) were added.

The NPs (PS beads and polymeric NPs) were characterized by dynamic light scattering using a ZS90 Malvern
Zetasizer Nano Series instrument (Malvern, Westborough, MA). Antibody loading of the NPs was performed as has
been previously published [20, 21]. Briefly, for polymeric NP Ab loading, the oxidation reaction (on the chains of
the polymeric NP outer dextran shell) was placed on a shaker for 3 days after which oxidized polymeric NPs were
purified using centrifugation and 100 µg anti-Intercellular Adhesion Molecule 1 (anti-ICAM-1) antibody R6.5 (derived
in house from hybridoma) was added and allowed to react for about 24 hours on a shaker. PS beads were conjugated
with R6.5 Ab by physisorption via incubation for 60 min. Free non-coated Ab was then separated by centrifugation,
and coated PS beads were re-suspended in PBS supplemented with 1% BSA.

S2.2 Endothelial cell culture, flow adaptation and NP exposure during flow

ICAM-expressing Chinese hampster ovary cells i.e., CHO cells, purchased from Sigma-Aldrich were plated in RPMI
1640 (w/ 25 mM HEPES) supplemented with 10% Fetal Bovine Serum. Cell media samples were regularly checked for
mycoplasma contamination using MycoAlert Kit (Lonza, Rockland, ME). For dynamic experiments, cells of passage
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(a)

(b)

FIG. 2: Force due to contributions of shear flow and volume fraction of particulate suspension, i.e., φ. (a) 0 s−1 and (b) 500
s−1. The inset shows the potential energy.

2 or 3 were plated onto 22X40 Fisherbrand microscope cover glass (Fisher Scientific, Pittsburgh, PA) with 1% m/v
Gelatin.

Confluent cells were assembled into confocal imaging chambers (Warner Instruments, Hamden, CT) and flow
adapted using a peristaltic pump for 4 hours to mimic endothelium whose actin fibers are aligned to flow as in the
human microvasculature at shear stresses of 100 and 500 s−1. NPs (192 nm polymeric NPs or 200 nm PS beads)
were introduced into the perfusate for dynamic NP binding studies at a concentration of 7.6× 1011/ml. The 8µm PS
beads were added to the perfusate in concentrations of 0, 0.1 and 0.3 of the perfusate volume to simulate the relevant
physiological red blood cell volume fraction.

Imaging NP binding

Images for dynamic experiments were observed using an Olympus IX-51 and captured using Hamamatsu ORCA
Flash 4.0 camera (Shizuoka, Japan) and a Luemncor LED light source (Beaverton, OR). Cells were imaged at 15,
60 and 240 min using a 40X Oil immersion lens (BioVision Technologies, Exton, PA). Images for each time point
were averaged: 1-4 image frames per time point, per experiment and then group averaged over three experiments (all
experiments were conducted in triplicates). Images taken for dynamic experiments were taken as a series of 10-15
frames.



10

Image analysis

Images obtained from the microscope (system was not image intensity saturated to obtain data) were processed on
ImageJ before using MATLAB to count color pixels. Using the Triangle method (standard on ImageJ) of thresholding,
particles were detected and extracted from the background eliminating noise. Each time point image had 15 frames,
which were averaged to eliminate particles that were rolling and not firmly bound. Large aggregates captured in
these averaged frames were then removed using a background subtracting function which excises all thresholded areas
having a diameter more than that of the NP (this limit was set as 480 and 640 nm for polymeric NPs and PS beads
respectively). The MATLAB program was used to provide fluorescence counts, which were normalized to cell number
using cell counts performed on bright-field images obtained in sequence with the fluorescence images at each of the
time-points. Finally we used the calibration method described in [22] to obtain an accurate count of the number of
NPs bound per cell at each time point for each experimental condition. The results were scaled to the result for 200
nm PS bead binding at 15 min for 100 s−1 shear exposure.

Statistical analysis

ANOVA was performed on all data sets to determine significance. A p-value less than or equal to 0.05 was considered
to be significant.

S2.3 In vivo targeting to vascular endothelium in mice

Anesthetized C57BL/6 female mice (16-24g, Harlan) were injected intravenously via jugular vein with NPs coated
with murine anti-ICAM-1 (YN1 clone, Biolegend) or control rat IgG (Jackson Labs). The injected dose was ∼ 200µl
(or ∼ 10 mg/kg) with a tracer amount of antibody-coated 125I-labeled NP. Blood was collected from the retro-orbital
plexus at 30 min post-injection and organs (heart, kidneys, liver, spleen, and lungs) were collected at 30 min post-
injection. Radioactivity and weight of the samples were determined to calculate polystyrene NP targeting. These
studies were carried out in accordance with the Guide for the Care and Use of Laboratory Animals as adopted and
promulgated by the U.S. National Institutes of Health. We quantified endothelial targeting as a function of lung
uptake of NCs in mice. Lung uptake is representative of endothelial targeting because the lung accounts for roughly
30 % of the endothelium in vivo [23]. Moreover, previous works (see example [13]) indicate that only uptake in the
pulmonary vasculature is dependent on the number of anti-ICAM molecules; thus we do not account for nontargeted
tissues, because the uptake of particles in the main reticuloendothelial system (RES) organ, liver, did not change
with variations of the anti-ICAM surface density. In fact, the hepatic uptake of any anti-ICAM/particle formulation
was not different from that of IgG/particles. The same result, i.e., lack of significant difference in the uptake of
various particle formulations, has been observed in the second main RES organ, spleen. Further, cardiac uptake of
the particles, reflecting nonspecific uptake in the tissues other than RES, was the same for all particles regardless of
the number of anti-ICAM molecules. The in vivo results for the polystyrene NP are depicted in Fig. 3(a).

In the case of polymeric NPs, NPs of 150 nm diameter were targeted to the endothelial surface protein ICAM (YN1
Ab) or the non-specific (IgG). Trace amounts of 125I-IgG enabled tracking. NPs were injected intravenously in mice
(n=5 per group). Selected organs were removed and weighed prior to gamma counter detection of 125I to measure
NP retention. NP biodistributions are reported in Fig. 3(b).
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