Supporting Information for

Unveiling Lasing Mechanism in CsPbBr₃ Microspheres Cavities

Wenna Du,^{a,#} Shuai Zhang,^{a,b#} Zhiyong Wu,^{a,c} Qiuyu Shang,^d Yang Mi,^a Jie Chen,^{a,b,d} Chaochao Qin,^c Xiaohui Qiu,^a Qing Zhang, *d,^e Xinfeng Liu *^a

^aCAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

^cCollege of Physics and Materials Science, Henan Normal University, Xinxiang 453007, P. R. China

^dDepartment of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

^eState Key Lab for Mesoscopic Physics, School of Physics, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China

[#]Wenna Du, Shuai Zhang contributed equally to this work.

*Email address: liuxf@nanoctr.cn, q_zhang@pku.edu.cn

Contents of the Supporting Information:

I. The setup of chemical vapor deposition method

II. SEM images of sphere samples with different titled angle

III. Estimation of exciton binding energy

IV. The power dependent PL

V. Temperature-dependent Raman spectra

VI. The anharmonic model

VII. Time-resolved PL spectroscopy and fitting

VIII. The setup of optical measurement system

I. The setup of chemical vapor deposition method

Figure S1 | Schematic of the chemical vapor deposition method setup

 $PbBr_2$ and CsBr powders (with 1:2 stoichiometry) were placed in the heating center of a quartz tube reactor. The silicon (Si) substrate was positioned at a distance of 12 cm away from the powder sources in the downstream. At as the carrier gas is flowing from the upstream to the downstream. At a sample temperature of 575 °C, we observed the reliable growth of CsPbBr₃ perovskite micro-crystals with a special shape of microspheres.

II. SEM images of sphere samples with different titled angle

Figure S2 | SEM images of three sphere samples with different titled angle. The error bar is 1 μ m.

III. Estimation of exciton binding energy

 $I(T) = R \left[1 - exp \left(-\frac{E_b}{k_B T} \right) \right] + c$, where I(T) is the integrated PL intensity at a specific temperature T. Therefore, temperaturedependent steady-state PL spectroscopy is conducted on individual CsPbBr₃ microsphere in a backscattering configuration with an excitation laser of 405 nm. The temperature is varied from 77 K to 300 K. The integrated PL intensity versus 1/T of four samples are plotted in **Figure S3** (solid black dots), showing the exciton binding energy from 65 ~ 86 meV. These values are much higher than the thermal disturbance at room temperature (KT~ 26 meV).

Figure S3 | The integrated PL intensity of four samples as a function of 1/T. The experimental data are well fitted.

IV. The power dependent PL

Figure S4 | (a) PL spectroscopy of CsPbBr₃ microsphere at room temperature with different laser power from 21 μ W to 220 μ W. (b) PL intensity as a function laser power in a log-log plot. The red line is a power-law fit $I=P^k$. Linear fitting of these plots gives a slope of 1.11 \pm 0.03, confirming exciton recombination process in these microspheres.

V. Temperature-dependent Raman spectra

To confirm the exciton-phonon coupling in sphere microcavities, Raman measurement is executed using 633 nm laser as the excitation source (**Figure S5**). As the CsPbBr₃ microsphere is heated from 103 K to 303 K, the splitting peaks near 70 cm⁻¹ of the Raman spectra are undistinguishable by degrees.

Figure S5 | Raman spectra of a typical CsPbBr₃ sphere at different temperatures from 103 to 303 K, showing the Raman shift as the temperature changes.

VI. The anharmonic model

In the anharmonic model, the variation of phonon frequency $\omega(T)$ and width $\Gamma(T)$ can be described by an anharmonic expression:

$$\omega(T) = \omega_0 + \Delta(T) \qquad (S1)$$

$$\Delta(T) = A \left\{ 1 + \frac{2}{e^{x} - 1} \right\} + B \left\{ 1 + \frac{3}{e^{y} - 1} + \frac{3}{(e^{y} - 1)^{2}} \right\}$$
(S2)

for temperature dependence of wave number at 76 cm⁻¹, and

$$\Gamma(T) = C\left\{1 + \frac{2}{e^{x} - 1}\right\} + D\left\{1 + \frac{3}{e^{y} - 1} + \frac{3}{(e^{y} - 1)^{2}}\right\}$$
(S3)

for temperature dependence of line-width at 76 cm⁻¹, where

$$x = \frac{\hbar\omega_0}{2K_BT}$$
(6)
$$y = \frac{\hbar\omega_0}{3K_BT}$$
(7)

 ω_0 is the characteristic frequency of the mode; A, B, C and D are constants.

VII. Time-resolved PL spectroscopy and fitting

Figure S6 TRPL decay curves of CsPbBr₃ spheres with different temperatures from 77 K to 298 K monitored around 530 nm with excitation at 400 nm (76 MHz, 120 fs).

The PL decay curve in **Figure S**6 can be well fitted by multi-exponential decay equation as follows:

$$I(t) = I_0 + A_1 \cdot e^{-\tau_1/t} + A_2 \cdot e^{-\tau_2/t}$$
(S4)
$$T = \frac{A_1 * \tau_1^2 + A_2 * \tau_2^2}{A_1 * \tau_1 + A_2 * \tau_2}$$
(S5)

where *I*, *T*, τ_i , *A*_i are the integrated PL intensity, average lifetime, lifetime and pre-exponential factors of CsPbBr₃ spheres at different temperature. The fitting results are shown in **Table S1**.

Table S1 The fitting results by multi-exponential decay equation

	298K	280K	260K	240K	220K	200K	180K	160K	140K	120K	100K	77K
$\tau_1(ns)$	2.26	1.63	1.61	1.52	1.62	1.95	1.98	2.69	2.98	2.80	2.32	2.78
τ ₂ (ns)	0.23	0.18	0.21	0.23	0.25	0.23	0.31	0.14	0.15	0.12	1.12	<mark>1.3</mark> 2
A ₁ (ns)	0.19	0.26	0.19	0.28	0.25	0.26	0.19	0.27	0.37	0.24	0.10	0.13
A ₂ (ns)	0.39	0.41	0.40	0.34	0.32	0.37	0.34	0.44	0.26	0.42	0.41	0.41

VIII. The setup of optical measurement system

Figure S7 The setup of optical measurement system. For steady-state PL spectroscopy, a CW laser (wavelength: 405 nm) is focused onto an individual CsPbBr₃ sphere using an Olympus BX51 microscope equipped with a 100× objective (NA = 0.95). PL emission signal was collected by the same microscope objective in a backscattering configuration and analyzed by Princeton Instrument spectrometer (PI Acton, Spectra Pro 2500i) equipped with a TE-cooled charge coupled detector camera (PIXIS-400B). The PL image is recorded by a cool-snap color camera equipped on Olympus BX51 microscope. The PL lifetime measurements were conducted by a time-corrected single photon counting technique (TCSPC) with ultimate temporal resolution of ~40 ps. The excitation laser source is a frequency-doubled mode-locked Ti-sapphire oscillator laser (800 nm, repetition rate 76 MHz, pulse length 120 fs). For lasing measurements, the laser source is generated by frequency doubled from a Coherent Astrella regenerative amplifier (80 fs, 1 kHz, 800 nm) that was seeded by a Coherent Vitara-s oscillator (35 fs, 80 MHz).

References:

(1) Chen, Z.; Yu, C.; Kai, S.; Wang, J. J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J. T., Photoluminescence study of polycrystalline CsSnI 3 thin films: Determination of exciton binding energy. *J. Lumin.* **2012**, *132*, 345-349.

(2) Zhang, Q.; Ha, S. T.; Liu, X.; Sum, T. C.; Xiong, Q., Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers. *Nano Lett.* **2014**, *14*, 5995-6001.