# **Supporting Information**

# Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices

Tarak K. Patra,<sup>1</sup> Henry Chan,<sup>1</sup> Elena V. Shevchenko,<sup>1\*</sup> Subramanian KRS Sankaranarayanan,<sup>1\*</sup> and Badri Narayanan<sup>2,3\*</sup> <sup>1</sup>Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439

<sup>2</sup>Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 <sup>3</sup>Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292

### **Force Field**



**Figure S1.** Details of coarse-grained model employed to simulate nanoparticle superlattices. Each PbS nanoparticle is modelled as an indivisible bead called NP. (a) MARTINI mapping scheme is used to obtain coarse-grained model (composed of beads C1-C4) from all-atom configuration of oleic acid. (b) Illustration of the steps used to prepare a CG configuration of NPSL. (c) MARTINI force field parameters used in this study are tabulated.

We employed the well-established MARTINI scheme to coarse-grain the oleic acid ligand molecules; each nanoparticle is modeled as an indivisible bead (Figure S1). The MARTINI force-field parameters are used to model interactions between different ligand molecules, and the nanoparticles (the parameters are summarized in Figure S1c). For unlike interactions, we employed Lorentz-Berthelot mixing rule where the LJ parameters for interactions between beads *i* and *j* are given by:  $e_{ij} = (e_{ii}e_{jj})^{1/2}$ , and

$$S_{ij} = \frac{1}{2} \left( S_{ii} + S_{jj} \right) ,$$

where,  $(e_{ii}, S_{ii})$ , and  $(e_{ii}, S_{ii})$  are the LJ parameters for *i*-*i* and *j*-*j* interactions respectively.

#### **Equation of State (EOS)**

We have computed the equation state of the NPSL from our coarse-grained simulation and compare with experiment. At each pressure, the system is equilibrated for 10ns in an isothermal isobaric ensemble at temperature T = 300K. The equilibrium volume is computed by averaging over 10000 frames collected over a period of 1 ns. The MARTINI force-field describes the equation of state of NPSLs in good qualitative accordance with experiments (Figure S2). This suggests that the coarse-grained model qualitatively capture the thermophysical properties of the experimental system.



**Figure S2.** Equation of state of a ligand-rich nanoparticle superlattice ( $\rho$ =4.9/nm<sup>2</sup>) from coarsegrained molecular dynamics and experiments at 300 K. The unit cell volume (V) at a given pressure is normalized by its value at pressure P = 1GPa (V<sub>0</sub>).

#### **Radial Distribution Function (RDF)**

Figures S3 shows the NP-NP radial distribution in NPSL (for various ligand coverage densities) at selected pressures during a compression-release cycles. It clearly suggests the NPSL sustain high applied pressure without losing their crystallinity at high ligand coverage densities ( $\rho = 1.8 - 5.5 \text{ nm}^{-2}$ ).



**Figure S3**. Radial distribution functions: a, b, c and d correspond to ligand density  $\rho = 1.8 \text{ nm}^{-2}$ , 2.4nm<sup>-2</sup>, 3.6nm<sup>-2</sup> and 5.5nm<sup>-2</sup>, respectively.

# **Thermogravimetric Analysis**



**Figure S4.** The thermogravimetric analysis (TGA) data obtained for the PbS NPSLs obtained by destabilization of the toluene solution of 7 nm PbS by isopropanol.

# **Transmission Electron Microscopy (TEM)**



**Figure S5.** The TEM image of a fragment of PbS NPSL after compression.

Small-Angle X-ray Scattering (SAXS) experiments



**Figure S6.** (Left) Optical micrograph and (Right) SAXS data on face-centered cubic NPSLs grown on Si substrate from 9.5 nm PbS NPs compressed up to 55.86 GPa and after pressure release.



**Figure S7**. SAXS of face-centered cubic NPSLs (assembled from 9.5 nm PbS NPs) grown on Si substrate (black), and of individual NPSL at 55.86 GPa (red) and after pressure release (blue).