Supporting information for: "Beyond Quantum Confinement: Excitonic Nonlocality in Halide Perovskite Nanoparticles with Mie Resonances"

A. S. Berestennikov,¹ Y. Li,² I. V. Iorsh,¹ A.A. Zakhidov,^{1,3} A. L. Rogach,² and S. V. Makarov¹

¹ITMO University, 49 Kronverkskii pr., Saint Petersburg 197101, Russia. ²City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR. ³University of Texas at Dallas, Richardson TX 75080, USA.

1. DIELECTRIC PERMITTIVITY FOR PEROVSKITE NANOPARTICLE WITH NONLOCAL AND QUANTUM CONFINEMENT CONTRIBUTIONS

Figure S1. Calculated spectral dependencies of the real and the imaginary parts of the dielectric permittivity for MAPbBr₃ perovskite spherical nanoparticle with diameters D=200 nm D=20 nm in local (green and black dashed lines) and nonlocal (blue and red dashed lines) cases. In the local case, permittivity have been calculated by using Eq.(3) with k=0. In the nonlocal case, permittivity have been calculated by Eq.(3) with $k_0 = \sqrt{\varepsilon_{loc}(\omega)} \times \omega/c$, where $\varepsilon_{loc}(\omega)$ is the permittivity in the local case.

Figure S2. Spectral dependencies of the first Mie coefficients calculated without nonlocality for MAPbBr₃ perovskite spherical nanoparticle with diameter D=20 nm.

Figure S3. Calculated dependencies of absorption cross section blue shift related to nonocality in MAPbI₃ (a) and MAPbCl₃ (b) perovskite spherical nanoparticles. Dots correspond to experimental values from the given references.