Supporting Information

The Luminescence Property of CsPb_xM_{1-x}Br₃ Perovskite Nanocrystals Transformed from

Cs₄PbBr₆ Mediated by Various Divalent Bromide MBr₂ Salts

Zhaohui Shen,^{ab} Bo Qiao,^{ab} Zheng Xu,^{ab} Dandan Song,^{ab} Di Gao,^{ab} Pengjie Song,^{ab} Jingyue Cao^{ab} and Qiongyu Bai^{ab}, Yuanchun Wu^C, Suling Zhao,^{* ab}

^aKey Laboratory of Luminescence and Optical Information (Beijing Jiaotong University), Ministry of Education, Beijing 100044, China

^bInstitute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China

^cShenzhen China Star Optoelectronics Technology Co., Ltd., Shenzhen, 518132, China

PL decay lifetime

The PL decay curve were fitted with a triexponential function

$$A(t) = A_1 exp^{[iii]}(-\frac{t}{\tau_1}) + A_2 exp^{[iii]}(-\frac{t}{\tau_2}) + A_3 exp^{[iii]}(-\frac{t}{\tau_3})$$

where A_1 , A_2 , and A_3 are time independent coefficient constants, and t is time. τ_1 , τ_2 , and τ_3 are decay lifetimes because of the intrinsic exciton relaxation, the interaction between excitons and phonons, and the interaction between excitons and defects, respectively.

 τ $_{\text{ave}}$, the average lifetime, can be calculated with a function

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2}{A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3}$$

Figure S2. PL decay curves of CsPb_xZn_{1-x}Br₃ NCs synthesized at different temperature.

Table 1. Fluorescence lifetimes of CsPb_xZn_{1-x}Br₃ NCs.

Temperature	70°C	80°C	90℃	100°C	130°C
Average Time(ns)	5.04	4.79	4.33	4.31	4.70

Figure S2. XPS spectra for CsPb_xEu_{1-x}Br₃ NCs. (a–d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Eu 3d and Br 3d, respectively.

Figure S3. XPS spectra for CsPb_xZn_{1-x}Br₃NCs. (a–d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Zn 2p and Br 3d, respectively.

Figure S4. XPS spectra for CsPb_xMn_{1-x}Br₃ NCs. (a–d) The high-resolution XPS analysis corresponding to Cs 3d, Pb 4f, Mn 2p and Br 3d, respectively.

Figure S5. EDS element mapping images of CsPb_xZn_{1-x}Br₃ NCs. (a-e) images of Cs, Pb, Zn and Br.

Figure S6. EDS element mapping images of $CsPb_xMn_{1-x}Br_3NCs$. (a-e) images of Cs, Pb, Mn and Br.

Figure S7. EDS element mapping images of $CsPb_xEu_{1-x}Br_3 NCs$. (a-e) images of Cs, Pb, Eu and Br.

Table S2. Substitution rates for lead ions in $CsPb_xM_{1-x}Br_3NCs$

	Cs⁺ (%)	Pb ²⁺ (%)	M ²⁺ (%)	Br⁻(%)	M ²⁺ / (Pb ²⁺ +M ²⁺) (%)
$CsPb_xMn_{1-x}Br_3$	1.99	0.51	1.57	8.9	75.48
$CsPb_xEu_{1-x}Br_3$	12.09	6.61	7.04	7.16	51.58
CsPb _x Zn _{1-x} Br ₃	3.17	0.45	1.94	12.57	81.17