Supplementary Information for

Highly tunable nonlinear response of Au@WS $_2$ hybrids with

plasmon resonance and anti-Stokes effect

Yun-Hang Qiu,^{‡a} Kai Chen,^{‡a,b} Si-Jing Ding,^{*a,c} Fan Nan,^{a,d} Yong-Jie Lin,^{a,b} Jia-Xing Ma,^a

Zhong-Hua Hao,^a Li Zhou^a and Qu-Quan Wang* ^{a,b}

^aKey Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China

^bThe Institute for Advanced Studies, Wuhan University, Wuhan 430072, P. R. China

^cSchool of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R.

China

^dDepartment of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States

[‡]These authors equally contributed to this work.

* E-mail: qqwang@whu.edu.cn, dingsijing@cug.edu.cn

Fig. S1. Normalized open-aperture Z-scan transmittances T_{OA} of bare Au nanoparticles with the same amount of Au in Au@WS₂ with $\rho_{Au:W} = 0.20$ at the excitation wavelength λ_{exc} of 710 nm and 900 nm. Extremely weak saturable absorption with $\beta = -0.09$ cm/GW is observed at 710 nm, which is 1/20 of that of bare WS₂ nanobelts. The nonlinear absorption is hard to observe at 900 nm.