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S1. Derivation of the Resonance Frequency for a Membrane using a
Simplified String Ansatz

We assume that the rectangular graphene membrane with width w and length L has uniaxial homogeneous
strain along the length direction x of the membrane. We hereby assume that there is no contraction in the
width. In reality, if a membrane is strained in x direction, it will shrink to some extend in the orthogonal
direction y. Since we neglect this, the model is only fine for sheets with w � L. With this assumpation we
can treat the two-dimensional (2D) membrane as a one-dimensional (1D) string. This is shown in Fig. S1.
To model the electrostatic action, we introduce the gate capacitor CG, which we assume to be connected
to the middle of the string. The gate voltage VG is applied to the capacitor through the left contact. In
figure (a) the case for VG = 0 V is shown. It is assumed that there is a pretension in the string given by
the force T0 in units of Newton. If a voltage VG 6= 0 is applied, as shown in (b), the string is pulled down
by the emergent electrostatic force F . Consequently the tension increases to T = T0 + Te, where Te is the
additional tension.
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FIG. S 1: (a) String (blue) of length L0 under pre-tension T0 connected to a capacitor CG to simulate the
action of an electrostatic force. In (b) the electrostatic force F due to VG 6= 0 is pulling on the string,
resulting in an extension z and an increased tension T > T0. The small value δz indicates that the string
can also vibrate around its equilibrium position. The resonance frequency is calculated assuming that the
string is massless and that all mass m is in the upper capacitor plate.

From geometry, we have
z

L/2
=
F/2

T
. (1)
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This results into the relation

z = L
F

4T
=

F

2T

√
(L0/2)2 + z2, (2)

which for z � L0 can be approximated as

z = L0
F

4T
. (3)

Hence, the effective force distance relation of the strained string reads

F =
4T

L0
z. (4)

We note here, that the force distance relation is still non-linear, since T is a function of z. This we determine
next. We first look at the additional tension Te arising through the electrostatic force. We assume that the
force of the string is linear in elongation and write Te = E∆L/2, where ∆L = L−L0 and E the 2D Young’s
modulus of graphene. L can be written for small extensions z � L0 as

L = 2
√

(L0/2)2 + z2 ' L0 + 2L0

(
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)2

, (5)

resulting in

∆L = 2L0

(
z

L0

)2

. (6)

Taken all together yields the following expression for the force F (z) as a function of extension z

F (z) = 4z

(
T0
L0

+ E

(
z

L0

)2
)

. (7)

Given all constants, L0, T0 and E, we see that F (z) is in general not linear, but has a cubic contribution.
This force is balanced by the electrostatic force of the capacitor CG, which is given by

G =
1

2

∂CG

∂z
V 2
G. (8)

Hence, the equilibrium position z = z0 needs to be calculated from the equation
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The symbol |z0 denotes that the value of the function to the left has to be taken at z = z0.

Around the equilibrium position z0 the string vibrates measured by the excursion δz(t), which is a function
of time t. The dynamics is given by Newton’s law:

mδ̈z = − ∂F
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∣∣∣∣
z0
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Here, we have assumed that the excursion δz is sufficiently small, which results in a simple harmonic oscillator
model with a fixed spring constant. The first part of the spring constant, the derivative of the force F (z),
can be calculated in a straightforward manner:
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= 4
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)2

. (11)

The second part corresponds to a negative spring constant. It is known as Coulomb softening. Inserting
back into Newton’s equation equ. 10 yields then

mδ̈z = −
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We then obtain for resonance frequency ωo:

mω2
0 = 4
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There are now two equations that need to be solved together: equation 9 and 12. The first one determines
the equilibrium position z0 and the second the vibration eigenfrequency ω0. We can distinguish two cases.

In the first case (a) T0 → 0, z0 ∝ V
2/3
G , according to equation 9. According to equation 13 the last term

will then dominate, resulting into a negative dispersion relation ω(VG) ∝ −V 2
G. That is to say that ω(VG)

changes to smaller values with increasing magnitude of VG until sufficient tension is built up. Case (b) is
easier to treat. Here we assume that T0 is initially already large. This is the case in the experiments we
have performed. More precisely, we assume that the first term on the left in equation 9 dominates over the
second. We then obtain for z0:
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We now enter this value into resonance equation 13 and obtain:
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This is the equation that appears in the publication. Let us now define the two limits using this equation.
In the limit that T0 is ‘small’ the first term is small and for the two gate-dependent terms the second term
dominates over the third. This results in a positive dispersion with ω ∝ V 4

G. The equation reads:
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In contrast, if T0 is large, the second term can be neglected. The eigenfrequency is now large and the
dispersion is initially negative. The equation reads:
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In this later case, by fitting the theoretical model with the experimental curve, one obtains with quite good
accuracy as fitting parameters directly the mass m, the built-in tension T0 and the second derivative of
CG at the equilibrium position. Almost all measured dispersion curves are of this kind, i.e. show negative
dispersion, indicating that there is substantial built-in strain T0.
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S2. Fitting Procedure

We briefly describe how the measured response curves f0(Vg) are fitted. In our experiment, we performed
several current annealing steps to clean graphene. At a few intermediate steps, we measured the dispersion
curves. We repeated this process until we observe Fabry-Pérot (FP) oscillations in the conductance, which
is evidence for ballistic transport. Then, we assumed that the sample is clean from adsorbates, so that the
final mass density should be very close to the monolayer graphene mass density (ρ ≈ ρ0). Hence, we fixed
ρ at ρ0. By fixing this, only two parameters are free to be fitted: the built-in tension T0 and CG. While
ideally one could think to fit all three parameters, this is not possible in most of the measured dispersion
curves. Having fixed the mass density ρ for ballistic devices showing FP oscillations to ρ0, we obtain then
values for CG and T0 from the data. Next, we used the extracted value, CG in measurements, which we
obtain before the “final” step when the sample did not yet show FP oscillations, to extract T0 and ρ. To
summarize, CG is fixed in the “final” step, assuming (ρ = ρ0), and ρ and T0 are obtained using this single
CG for all data obtained before.

In the following table we list the calculated and the fitted capacitance values for each device, using a simple
parallel-plate capacitor model to calculate capacitances. It is seen that there is a significant difference. The
fitted capacitance turns out to be bigger by as much as a factor of 50. This is probably due to two reasons.
First, there is an additional stray capacitance. The biggest difference, however, comes from the assumption
of a parallel plate capacitor. In this model the two plates move parallel to each other with coordinate
z. In reality, the graphene membrane is clamped on both sides and there is a homogeneous force acting
on the surface. The effective bending of the membrane is therefore much less. One cannot assume that
CG ∝ 1/z. In contrast, CG ∝ 1/zp with a power p � 1. In the fitting procedure, we obtain CG through
the negative curvature of the dispersion relation. This curvature is given by the second derivative of CG,
and, hence, proportional to 1/p. As p could easily be 1/10, the extracted capacitance comes out wrong by
more than an order of magnitude. Hence, the difference can be anticipated to be large. It is due to the
simplified assumptions. We stress, however, that this has no effect on the extracted tension, since this value
is determined by the frequency at zero gate voltage.

Table 1: The comparison of calculated capacitance value and fitted capacitance value by fitting

Device W (µm) L(µm) Calculated capacitance [F] Fitted capacitance [F]

A 4.1 1.1 6.6 × 10−17 3.5 × 10−15

B 3 1.2 5.3 × 10−17 3.9 × 10−15

C 2 1.5 4.4 × 10−17 1.2 × 10−16
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S3. Comparison between the mixing current and calculated transconduc-
tance
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FIG. S 2: The comparison between the mixing current of the resonator and calculated transconductance at
(a) VG1 = 10 V, (b) VG1 = −10 V, and (c) VG1 = −20 V. The upper panels are the calculated transconduc-
tance, while the lower panels are the mixing current measured as a function of frequency f and VG2.
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