1	Supporting Information
2	
3	Glowing gold nanoparticles coating: Retrieving a
4	lost property from bulk gold
5	
6	Yukari Kawabe ^a , Takashi Ito ^b , Hiroaki Yoshida ^c , Hiroshi Moriwaki ^{*a,b}
7	^a Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu
8	University, 3-15-1 Tokida, Ueda 386-8567, Japan, e-mail: moriwaki@shinshu-u.ac.jp
9	^b Research Center for Supports to Advanced Science, Division of Instrumental Analysis
10	(Ueda branch), Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan.
11	° Department of Chemistry and Materials, Faculty of Textile Science and Technology,
12	Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
13	
14	
15	
16	

17 Contents

18	1. TEM image of the AuNPs of the Au/PG/CF (Fig.S1).	S3
19	2. Size distribution of the AuNPs of the Au/CF and Au/PG/CF (Fig.S2).	S 3
20	3. Results of Au/PG(6B)/CF (Fig.S3, TableS1).	S4
21	4. Results of Au/graphite/CF (Fig.S4).	S 5
22	5. Reduction of <i>p</i> -NP with NaBH ₄ in the presence of Au/PG(6B)/CF (Fig.S5).	S6
23	6. Catalytic reduction of pendimethalin with Au/PG/CF (Fig.S6).	S7
24		

26 1. TEM image of the AuNPs of the Au/PG/CF.

27

29 Fig.S1 TEM image of the AuNPs of the Au/PG/CF

30

31 2. Size distribution of the AuNPs of the Au/PG/CF and Au/CF.

32

34 Fig.S2 Size distribution of the AuNPs of the Au/PG/CF (a) and Au/CF (b).

35

37 3. Results of Au/PG(6B)/CF

Sample	Au/PG(6B)/CF
Attached amount of PG (mg/cm ²)	1.2
Deposited amount of Au (mg/cm ²)	0.159
Au particle diameter ^a (nm)	103 ± 26.3
Electric resistivity log ₁₀ (Ω/□)	1.9

Table S1. Amount of attached PG and deposited AuNPs, diameter of the formed AuNPs, and electric resistivity of Au/PG(6B)/CF.

^a Diameter was calculated from TEM images (n=100).

47

48 4. Results of Au/graphite/CF

49

52 powder (pre-ground by a mortar) or mixture of graphite/kaolinite was also tried in the same manner.

53 Both gave the golden color surface (data not shown).

54

56 5. Reduction of *p*-NP with NaBH₄ in the presence of Au/PG(6B)/CF

Fig.S5 Reduction of *p*-NP with NaBH₄ in the presence of Au/PG(6B)/CF, (a) Remaining concentration of *p*-NP with reaction time (n=3). (b) Pseudo-first order plots of the degradation of p-NP vs reaction time. A₀ is the initial absorbance at 400 nm, and A_t is the absorbance at t h.

- 62
- 63

64

66 6. Catalytic reduction of pendimethalin with Au/PG/CF.

Diamino-substituted pendimethalin

- 68 Fig.S6 Catalytic reduction of pendimethalin with Au/PG/CF.
- 69 Positive ion electrospray ionization (ESI) mass spectrum of the solution after the reaction of
- 70 pendimethalin with Au/PG/CF and NaBH₄ for 5 h. The initial concentration of pendimethalin and
- 71 NaBH₄ were 80 μ g mL⁻¹ and 0.2% in methanol/H₂O (v/v=100/25), respectively.
- 72
- 73
- 74
- 75