Supporting Information for

Atomic origins of nickel doping enhanced electrocatalysis of monolayer MoS₂ for electrochemical hydrogen production

Ruichun Luo, ‡^a Min Luo, ‡^b Ziqian Wang, ‡^c Pan Liu, ^a Shuangxi Song, ^a Xiaodong Wang, ^a

Mingwei Chen*c

*Address correspondence to: mwchen@jhu.edu ‡These authors contribute equally to this work.

Experimental Procedures

Synthesis and characterization of Ni doped MoS₂ (Ni-MoS₂). The 1.0Ni-MoS₂ catalysts were synthesized by a one-step hydrothermal method. A 20 ml aqueous solution containing 0.5 mmol Na₂MoO₄·2H₂O, 0.5 mmol NiSO₄·6H₂O and 2.5 mmol L-cysteine was stirred for 0.5 hour, and then transferred into a 25 ml Teflon-line stainless steel autoclave and kept at 200 °C for 24 hours. After rinsing with 1 M H₂SO₄ aqueous solution and deionized water, the precipitates of Ni-MoS₂ were dried in air at 40 °C for 12 h. For comparison, pristine MoS₂ was synthesized through the same process without involving NiSO4·6H2O. The 0.5Ni-MoS₂ and 2.0Ni-MoS₂ samples were synthesized with 0.25 mmol and 1.0 mmol NiSO₄·6H₂O, respectively. All the chemicals, Na₂MoO₄·2H₂O, NiSO₄·6H₂O and L-cysteine were purchased from Aldrich and used as received from commercial suppliers. The microstructures of MoS₂ and Ni-MoS₂ ware characterized by a transmission electron microscope (JEOL ARM 200F) equipped with an aberration corrector for image-forming lens systems. Chemical analyses of the MoS₂ and Ni-MoS₂ were conducted by using X-ray energydispersive spectroscopy and X-ray photoelectron spectroscopy (AXIS ultra DLD, Shimazu). The HAADF-STEM images ware obtained by a transmission electron microscope (JEOL ARM 200F) equipped with a cold emission gun and an aberration corrector for the probe-forming lens system.

Electrochemical measurements. Hydrogen evolution reaction (HER) was tested with cyclic voltammetry (CV) and electrochemical impedance (Iviumstat Technology) in a three-electrode cell with a glassy carbon plate as a counter electrode and a saturated calomel electrode (SCE) as the reference electrode at room temperature. All potentials were referenced to a reversible hydrogen electrode by adding a value of (E (SCE) + $0.0591PH + E^0$ (SCE)) V. The hydrogen electrode (RHE) scale was calibrated using a pure Pt electrode before each test. For preparing the working electrode, 1 mg of catalyst and 20 µL of Nafion solution (5 wt %, DuPont Corporation) were first dispersed in 500 µL of water-ethanol solution (volume ratio: 3:1). The suspension was then sonicated (bath sonication, 200 W) for 30 min to form a homogeneous ink. Then, 10 µL of the catalyst ink was dripped onto the surface of a glassy carbon electrode (5 mm in diameter). The resulting electrodes were dried at room temperature for 10 h to yield a catalyst loading of approximately 0.77 mg/cm². The CV measurements were taken from -0.50 V to 0 V at a scan rate of 10 mV/s in 0.5 M H₂SO₄ solution. All the electrochemical data in the paper were not iR corrected.

DFT calculations. Our calculations were performed using the Vienna ab initio simulation package (VASP) based on the density functional theory $(DFT)^1$ within the generalized gradient approximations (GGA-PBE)². The projector augmented-wave (PAW)³ pseudopotential method was used with a cutoff energy of 450 eV. In order to examine the convergence of the results with a supercell size, two supercells with the sizes of $5 \times 5 \times 1$ and $6 \times 6 \times 1$ of the MoS₂ primitive cell were used with a separation of 15 Å between two layers. All atomic positions were relaxed using $6 \times 6 \times 2$ k-point grids, which depend on the size of the supercell. The lattice constant of the MoS₂ monolayer was 3.183 Å. After Ni incorporation, the optimized lattice constant of the

(Mo,Ni)S₂ monolayer was 3.236 Å. The positions of all atoms and lattice parameters were optimized until the residual forces were smaller than 0.01 eV/Å. The total energy in our models was relaxed to be the minimum while a precision of 10^{-5} eV was reached.

The adsorption energy is estimated as $\Delta E_{H} = E_{Mo(Ni)S2+nH} - E_{Mo(Ni)S2+(n-1)H} - E_{H2}/2$, where $E_{Mo(Ni)S2+nH}$ is the total energy of the Mo(Ni)S₂ system with n hydrogen atoms adsorbed on the surface, $E_{Mo(Ni)S2+(n-1)H}$ is the total energy for (n-1) hydrogen atoms adsorbed on the surface and the E_{H2} is the energy for a hydrogen molecule in the gas phase. The Gibbs free energy for hydrogen adsorption is calculated by including this correction: $G_{H} = \Delta E_{H} + \Delta E_{ZPE} - T\Delta S_{H}$. Here the ΔE_{ZPE} is the difference in zero point energy between the adsorbed hydrogen and hydrogen in the gas phase and ΔS_{H} is the entropy between the adsorbed state and the gas phase.

$MoS_2: G_H = \Delta E_H + 0.235 \text{ eV}$	$Ni_{0.04}Mo_{0.96}S_2$: $G_H = \Delta E_H + 0.374 eV$
$Ni_{0.06}Mo_{0.94}S_2$: $G_H = \Delta E_H + 0.369 \text{ eV}$	$Ni_{0.12}Mo_{0.88}S_2$: $G_H = \Delta E_H + 0.274 \text{ eV}$
$Ni_{0.16}Mo_{0.84}S_2$: $G_H = \Delta E_H + 0.272 \text{ eV}$	$Ni_{0.19}Mo_{0.81}S_2$: $G_H = \Delta E_H + 0.256 \text{ eV}$

Results and Discussion

1. The HER performance of pristine MoS₂ and 1.0Ni-MoS₂ in KOH

Figure S1. HER measurements of pristine MoS_2 and $1.0Ni-MoS_2$ in 1 M KOH. (a) Polarization curves; and (b) corresponding Tafel plots.

2. The layer numbers and interlayer spacings in the pristine MoS₂ and 1.0Ni-MoS₂.

Figure S2. TEM characterization of pristine MoS_2 and $1.0Ni-MoS_2$. (a) Low magnification TEM image of pristine MoS_2 ; (b) Enlarged TEM image showing the layer numbers and interlayer distance of pristine MoS_2 ; (c) Low magnification TEM image of $1.0Ni-MoS_2$; (d) Enlarged TEM image showing the layer numbers and interlayer distance of $1.0Ni-MoS_2$. The blue numbers in (b) and (d) represent the layer numbers and the red lines as used as the marks for measuring the interlayer distance. The scale bar in (a) and (c) is 200 nm and in (b) and (d) is 1 nm, respectively.

3. XRD patterns of the pristine MoS₂, 0.5Ni-MoS₂, 1.0Ni-MoS₂, and 2.0Ni-MoS₂.

As shown in Figure S3, the peaks representing (002) plane of MoS_2 in Ni-MoS₂ have a significant shift compared with standard and pristine MoS_2 , indicating a distance expansion of the interlayer space. Besides, in the XRD pattern of the 2.0Ni-MoS₂, extra peaks emerged, revealing the formation of NiS in the highly Ni doped sample.

Figure S3. XRD patterns of the pristine MoS_2 , 0.5Ni- MoS_2 , 1.0Ni- MoS_2 , and 2.0Ni- MoS_2 . The standard pattern of MoS_2 and NiS are shown as reference.

4. TEM characterization of 0.5Ni-MoS₂

As shown in Figure S1a and b, 0.5Ni-MoS₂ has a similar morphology with 1.0Ni-MoS₂, with the layer number of 1-7 and the interlayer distance is ~ 0.86 nm, larger than that of pure MoS₂ but smaller than that of 1.0Ni-MoS₂. The STEM-EDS mappings in Figure S2d–g show that Mo, S and Ni elements are homogeneously dispersed over the 0.5Ni-MoS₂ nanosheets. The quantitative EDS analysis suggests the chemical composition is Ni_{0.04}Mo_{0.96}S₂. Particulaly, Figure S2c shows the atomic HAADF-STEM image of 0.5Ni-MoS₂, and the Ni atom found here doesn't have a significant offset distance, while in 1.0Ni-MoS₂ the average offset distance is ~ 0.05 nm.

Figure S4. TEM characterization of 0.5Ni-MoS₂. (a) Low magnification TEM image; (b) high reselusion TEM image; (c) HAADF-STEM image; (d), (e) (f) and (g) STEM-EDS mappings of Mo, S, Ni and mix, respectively. The scale bar in (a), (b) and (c) is 50 nm, 5 nm and 0.5 nm, and in (d) - (g) is 50 nm, respectively.

5. TEM characterization of 2.0Ni-MoS₂

Figure S2a shows the morphology of 2.0Ni-MoS₂. Selected aera electron diffraction (SAED) (Figure S2b) reveals the formation of NiS with a hexagonal structure. Figure S2c shows the HAADF-STEM image of the NiS phase. Many brighter atoms are embedded in the NiS lattices, suggesting the NiS phase contains Mo.

Figure S5. TEM characterization of 2.0Ni-MoS₂. (a) Low magnification TEM image; (b) SAED; (c) HAADF-STEM image; (d), (e) (f) and (g) STEM-EDS mappings of Mo, S, Ni and mix, respectively. The scale bar in (a) and (c) is 500 nm and 2 nm, and in (d) - (g) is 200 nm respectively.

6. XPS characterization of pristine MoS_2 and $Ni-MoS_2$

Figure S6. XPS spectra of (a) pristine MoS_2 , (b) 0.5Ni-MoS₂, (c) 1.0Ni-MoS₂ and (d) 2.0Ni-MoS₂, respectively.

7. Atomic models and corresponding simulated STEM images of monolayer and bilayer MoS_2

Figure S4 shows the projective atomic models and corresponding simulated STEM images of monolayer and bilayer MoS_2 from top view. The difference of the two samples can be easily distinguished from the HAADF-STEM images as shown in (e) and (f).⁴ Therefore, the deconvoluted HAADF-STEM image of Ni-MoS₂ showing in Figure 3a can be confirmed from the monolayer structure.

Monolayer 1H MoS₂

Bilayer 2H MoS₂

Figure S7. Projected structure models of (a) monolayer 1H MoS_2 and (b) bilayer 2H MoS_2 from side view; projected structure models of (c) monolayer 1H MoS_2 and (d) bilayer 2H MoS_2 from top view, i.e. [001] direction. Corresponding stimulated HAADF-STEM images of (e) monolayer 1H MoS_2 and (f) bilayer 2H MoS_2 from top view.

8. Comparison between original and deconvoluted STEM images of 1.0Ni-MoS₂ We used ultra thin carbon TEM grid with 300 mesh to hold our samples when observing under TEM and STEM. The 3nm amorphous carbon film, unfortunately, still affected the contrast of monolayer MoS₂, as shown in figure S5a. To eliminate the substrate influence, we used a deconvolution method to filter the image with *HREM DeConvHAADF* software,⁵ and the result is shown in Figure 3a and S5b. Figure S5c shows the difference of the intensity between the original and deconvoluted images.

Figure S8. (a) Original atomic HAADF-STEM image of 1.0Ni-MoS₂; (b) corresponding deconvoluted HAADF-STEM image of 1.0Ni-MoS₂ with red false colour; (c) the intensity line profiles in image (a) along the red rectangle and image (b) along the green dashed rectangle. The scale bar in (a) and (b) is 0.5 nm.

9. The chemical bonding structures of Mo-S in $2H-MoS_2$ and Ni-S bond in NiS.

Figure S9. (a) The trigonal prism coordination for the Mo atom in $2H-MoS_2$ and (b) the octahedral coordination for the Ni atom in NiS.

10. DFT-optimized structure models of $Ni-MoS_2$ with different Ni contents

Figure S10. DFT-optimized structure models of (a) $Ni_{0.04}Mo_{0.96}S_2$, (b) $Ni_{0.08}Mo_{0.92}S_2$, (c) $Ni_{0.12}Mo_{0.88}S_2$ and (d) $Ni_{0.16}Mo_{0.84}S_2$, respectively.

11. Band structures of pristine MoS₂ and Ni-MoS₂

Figure S11. Band structures of (a) pristine MoS_2 , (b) $Ni_{0.04}Mo_{0.96}S_2$, (c) $Ni_{0.08}Mo_{0.92}S_2$, (d) $Ni_{0.12}Mo_{0.88}S_2$ (e) $Ni_{0.16}Mo_{0.84}S_2$, and (f) $Ni_{0.19}Mo_{0.81}S_2$, respectively.

12. The total density of states (TDOS) and projected density of states (PDOS) of pristine MoS_2 and $Ni-MoS_2$

Figure S12. The TDOS and PDOS on (a) pristine MoS_2 (b) $Ni_{0.04}Mo_{0.96}S_2$, (c) $Ni_{0.08}Mo_{0.92}S_2$, (d) $Ni_{0.12}Mo_{0.88}S_2$ (e) $Ni_{0.16}Mo_{0.84}S_2$, and (f) $Ni_{0.19}Mo_{0.81}S_2$, respectively.

13. Charge distributions in Ni-MoS₂ with different Ni contents

Figure S13. Partial charge density of of (a) $Ni_{0.04}Mo_{0.96}S_2$, (b) $Ni_{0.08}Mo_{0.92}S_2$, (c) $Ni_{0.12}Mo_{0.88}S_2$ and (d) $Ni_{0.16}Mo_{0.84}S_2$, respectively. Yellow and blue isosurfaces represent positive and negative charges, respectively.

Table S1. Table Caption Calculated adsorption energy $[\Delta E_H (H^*)]$ and Gibbs free energy $[G_H (H^*)]$.

Catalysts	Adsorption energy ΔE_{H} (eV)	Gibbs free energy G _H (eV)	
MoS_2	-0.952	-0.717	
Ni _{0.04} Mo _{0.96} S ₂	-0.610	-0.236	
$Ni_{0.06}Mo_{0.94}S_2$	-0.591	-0.222	
Ni _{0.12} Mo _{0.88} S ₂	-0.463	-0.189	

$Ni_{0.16}Mo_{0.84}S_2$	-0.445	-0.173
Ni _{0.19} Mo _{0.81} S ₂	-0.391	-0.135

Table S2. The HER activities of the as-prepared Ni-MoS₂ and the reported MoS_2 -based non-noble metal catalysts.

Catalyst	Electrolyte	Overpotential (mV) at 10 mA/cm ²	Tafel slope (mV/decade)	References (Year)
1.0Ni-MoS ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	173	69	This work
1.0Ni-MoS ₂	1.0 m KOH	124	64	This work
Ni-Co-MoS ₂ nanobox	0.5 M H ₂ SO ₄	155	51	6 (2016)
Cu–MoS ₂	0.5 M H ₂ SO ₄	211	86	7 (2017)
Co-MoS ₂ mesoporous foam	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	156	74	⁸ (2017)
Ni-MoS ₂	0.5 M H ₂ SO ₄	300 (11 mA/cm2)	89	9 (2017)
Ni-MoS ₂	0.5 M H ₂ SO ₄	~170	/	¹⁰ (2016)
Ni-MoS ₂	1.0 m KOH	98	60	¹⁰ (2016)
Amorphous Co/Ni with 1T-MoS ₂	1.0 m KOH	70	38.1	11 (2017)
Co-MoS ₂ /BCCF-21	1.0 m KOH	48	52	12 (2018)
Strained MoS ₂ with S vacancies	0.3 M H ₂ SO ₄	170	60	¹³ (2016)
1T-MoS ₂	$0.5 \text{ M H}_2 \text{SO}_4$	175	41	¹⁴ (2016)
Amorphous MoS ₂	0.5 M H ₂ SO ₄	143	39.5	15 (2016)
highly porous MoS ₂ nanostructures	0.5 M H ₂ SO ₄	130	69	16 (2017)

References

- 1. G. Kresse and J. Furthmüller, *Physical review B*, 1996, **54**, 11169.
- 2. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865.
- 3. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758.

- 4. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman and M. S. Strano, *Nature nanotechnology*, 2012, 7, 699.
- 5. K. Ishizuka and E. Abe, 2004.
- X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou and U. Paik, *Adv. Mater.*, 2016, 28, 9006-9011.
- 7. H.-Y. He, Scientific Reports, 2017, 7, 45608.
- J. Deng, H. Li, S. Wang, D. Ding, M. Chen, C. Liu, Z. Tian, K. Novoselov, C. Ma and D. Deng, *Nature communications*, 2017, 8, 14430.
- Y. Shi, Y. Zhou, D.-R. Yang, W.-X. Xu, C. Wang, F.-B. Wang, J.-J. Xu, X.-H. Xia and H.-Y. Chen, J. Am. Chem. Soc., 2017, 139, 15479-15485.
- 10. J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen and X. Feng, *Energy & Environmental Science*, 2016, 9, 2789-2793.
- H. Li, S. Chen, X. Jia, B. Xu, H. Lin, H. Yang, L. Song and X. Wang, *Nature communications*, 2017, 8, 15377.
- Q. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Wang, H. G. Yang, P. K. Wong, H. Zhang and H. Zhao, *Adv. Mater.*, 2018, 1801450.
- H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan and F. Abild-Pedersen, *Nature materials*, 2016, 15, 48.
- 14. X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui and T.-p. Chen, *Nature communications*, 2016, 7, 10672.
- A. Y. Lu, X. Yang, C. C. Tseng, S. Min, S. H. Lin, C. L. Hsu, H. Li, H. Idriss, J. L. Kuo and K. W. Huang, *Small*, 2016, **12**, 5530-5537.
- L. Wang, X. Li, J. Zhang, H. Liu, W. Jiang and H. Zhao, *Appl. Surf. Sci.*, 2017, **396**, 1719-1725.