Biomolecular interfaces based on self-assembly and self-

recognition form biosensors capable to record single molecule

binding and release

Xiao Hu¹, Anthony Guiseppi-Elie², and Cerasela Zoica Dinu^{1*}

¹Department of Chemical and Biomedical Engineering, West Virginia University,

WV, USA

²Department of Biomedical Engineering, Texas A&M University College of Engineering, TX, USA

*Corresponding author:

Cerasela Zoica Dinu, Ph.D. Department of Chemical and Biomedical Engineering West Virginia University Benjamin M. Statler College of Engineering and Mineral Resources PO Box 6102 Morgantown, WV, 26506, USA E-mail: <u>cerasela-zoica.dinu@mail.wvu.edu</u> Tel.: +1 304 293 9338

Fax: +1 304 293 4139

Supporting Info	rmation S1:	The sequer	ice of kinesir	n 1 (simpl	y called kinesin)			
heavy chain	1.6		1 1					
10 10 2	imported fro	m previous r 30	40	50				
	MCRERPI	NE SEVNRO		GEDTVV	IASKPVAEDR			
					IASKI TAPDR			
60	/0	80	90	100				
VFQSSTSQEQ V	YNDCAKK	IV KDVLEG	YNGT IFAY	GQTSSG I	KTHTMEGKLH			
110	120	130	140	150				
DPEGMGIIPR IVQDIFNYIY SMDENLEFHI KVSYFEIYLD KIRDLLDVSK								
160	170	180	190	200				
TNLSVHEDKN HVAVTNMNEH	RVPYV	VKGCTE	RFVCSPD	DEVM	DTIDEGKSNR			
210	220	230	240	250				
SSRSHSIFLI NVKQENTQTE QKLSGKLYLV DLAGSEKVSK TGAEGAVLDE								
260	270	280	290	300				
AKNINKSLSA L	GNVISALA	E GSTYVPY	RDS KMTRI	LQDSL G	GNCRTTIVI			
310	320	330	340	350				
CCSPSSYNES ETKSTLLFGQ RAKTIKNTVC VNVELTAEQW KKKYEKEKEK								
360	370	380	390	400				
NKILRNTIQW LENELNRWRN GETVPIDEQF DKEKANLEAF TVDKDITLTN								
410	420	430	440	450				
DKPATAIGVI GNFTDAERRK CEEEIAKLYK QLDDKDEEIN QQSQLVEKLK								
460	470	480	490	500				
TQMLDQEELL VLQALEELAV	ASTRR	DQDNM	QAELNRI	.QAE	NDASKEEVKE			
510	520	530	540	550				
NYDQKSQEVE DKTKEYELLS DELNQKSATL ASIDAELQKL KEMTNHQKKR								
560	570	580	590	600				
AAEMMASLLK	DLAEIGIAV	/G NNDVK	QPEGT GMII	DEEFTVA	RLYISKMKSE			

6	510	620	630	640	650				
VKTMVKRCKQ LESTQTESNK KMEENEKELA ACQLRISQHE AKIKSLTEYL									
6	60	670	680	690	700				
QNVEQK VQTANE	KKRQL EVKQA	EESVDALSEE		QLRAQEKV	HEMEKEHLNK				
7	'10	720	730	740	750				
VEQQIQSHRE THQKQISSLR DEVEAKAKLI TDLQDQNQKM MLEQERLRVE									
7	/60	770	780	790	800				
HEKLKA KELQTL	ATDQE HNLR	KSRKLHEL	TV MQ)DRREQARQ	DLKGLEETVA				
8	310	820	830	840	850				
KLFVQDLATR VKKSAEIDSD DTGGSAAQKQ KISFLENNLE QLTKVHKQLV									
8	860	870	880	890	900				
RDNADLRCEL PKLEKRLRAT AERVKALESA LKEAKENASR DRKRYQQEVD									
9	010	920	930	940	950				
RIKEAVRSKN MARRGHSAQI AKPIRPGQHP AASPTHPSAI RGGGAFVQNS									
9	960								

QPVAVRGGGG KQV

Supporting Information S2: Loading of the redox agent onto the kinesin

Kinesin was expressed as described in the manuscript's Materials and Methods². Ferrocene monocarboxylic acid-kinesin conjugates were prepared by dissolving 4 mg ferrocene monocarboxylic acid (FCA, Fisher Scientific, USA) in 800 μ L of BRB80 buffer (formed from a mixture of 80 mM piperazine-N,N'-bis(2-ethanesulfonic acid buffer, 1 mM MgCl₂ and 1 mM ethylene glycol tetraacetic acid (EGTA), pH 6.8; all reagents were purchased from Fisher Scientific, USA) which contained 5 mM biotinsulfo-N-Hydroxy succinimide (biotin-sulfo-NHS, Sigma, USA), 2 mM 1-Ethyl-3-(3'-dimethylaminopropyl) carbodiimide (EDC, Fisher Scientific, USA) and 10 μ M taxol (Fisher Scientific, USA). The mixture was subsequently incubated for 15 min at room temperature. Upon incubation, 90 μ L of 2.8 mg/mL kinesin was mixed with the FCA solution and incubated for 4 h at 4 °C; the reaction was terminated by adding β -mercaptoethanol (Fisher Scientific, USA, 20 mM final concentration)³.

Loading of the FCA onto the kinesin was estimated by subtracting the amount of the free FCA in the supernatant of span down FCA-kinesin conjugates from the total FCA being added in the reaction. Specifically, after the FCA-kinesin conjugates were synthesized as described above, the FCA-kinesin conjugates were span at 30,000 rpm for 10 min using an Allegra 64R centrifuge (Beckman Coulter, USA). After the centrifugation, the supernatant was collected and evaluated using fluorescence microscopy (Nikon, USA). The pellet was mixed with BRB80 again and the centrifugation was repeated until there was no kinesin visible in the fluorescence microscopy. The concentration of the free FCA in the supernatant was also evaluated using the electrochemical workstation and a user-performed calibration curve (**Figure S1**).

Figure S1: The calibration curve of FCA.

Supporting Information S3: Theoretical evaluation of FCA-kinesin conjugates Immobilized at the user-functionalized electrode interface

Calculations considered the total length of a MT (L_{MT}) as being the overall electrode area (3.14 mm²) divided by an individual MT diameter (i.e., d=25 nm⁴) as well as that kinesin molecules binding area is about 8 nm at a MT individual binding site⁵. Maximum theoretical numbers of FCA-kinesin conjugates ($N_{FCA-kinesin-max}$) on the electrode was thus calculated using:

$$N_{FCA-Kinesin-max} = \frac{L_{MT}}{8nm}$$

The full area of the electrode was defined as A_E .

$$A_{\rm F} = \pi (0.5d)^2 = 3.14 \times (0.5 \times 0.02)^2 = 3.14 \times 10^{-4} m^2$$

The area that the microtubule occupied on the electrode defied as A_{MT} equaled its cross-section area ($A_{MT-cross}$). When the MT formed a monolayer on the electrode it was considered that full surface area of the electrode ($A_{MT} = A_E$) was occupied. The length of the microtubule was calculated using the area of the gold electrode divided by the diameter of the microtubule.

$$L_{MT} = \frac{A_{MT}}{d_{MT}} = \frac{A_E}{d_{MT}} = \frac{3.14 \times 10^{-4} m^2}{25 \times 10^{-9} m} = 1.256 \times 10^4 m$$
$$N_{FCA-Kinesin-max} = \frac{L_{MT}}{8nm} = \frac{1.256 \times 10^4 m}{8 \times 10^{-9} m} = 1.57 \times 10^{12}$$

Supporting Information S4: CV of FCA-kinesin conjugate at the modified electrode before adding ATP.

FCA-kinesin conjugates functionalized gold electrode scanned for 20 cycles with scanning being stopped for 20 sec after finishing each such cycle showed that the peak currents did not change from the first to the last cycle when no ATP was present in solution thus indicating that the number of the immobilized kinesin-FCA conjugates did not change over time (**Figure S2**).

Figure S2: CV of FCA-kinesin conjugate at the modified electrode (Au/MUA /Anti-tubulin Antibody/MT) before adding 250 μ M ATP.

Supporting Information S5: CV of FCA-kinesin conjugate at the modified electrode before adding ATP.

FCA-kinesin conjugates dissociation was triggered by the addition of different concentrations of ATP, i.e., 2.5 μ M, 250 μ M and 2.5 mM respectively. CV analysis performed for a total 10 CV cycles, with the scanning being stopped for 20 sec after finishing each such cycle, are included below (Figure S3). Briefly, the peak current went down with the ATP concentration thus supporting the hypothesis that the binding and unbinding could be specifically controlled by changes in the chemical energy provided to the functional biosensor. This is also supported by previous analysis⁶ that has showed that controlling ATP concentrations could lead to differences in the kinesin speed (from 10 nm/s for 1 μ M to 550 nm/s for 1000 μ M for instance) and thus its subsequent dissociation when encountering the end of a microtubule track.

Figure S3 Relationship between peak currents of FCA-kinesin conjugates and CV cycles as measured on a modified electrode and in BRB80 buffer (pH 6.8) containing 10 mM taxol. For such analysis, different concentrations of ATP were used, namely 2.5 μ M, 250 μ M and 2.5 mM respectively.

References:

1. Kull, F. J.; Sablin, E. P.; Lau, R.; Fletterick, R. J.; Vale, R. D., Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. *Nature* **1996**, *380* (6574), 550.

2. Hu, X.; Fagone, P.; Dong, C.; Su, R.; Xu, Q.; Dinu, C. Z., Biological self-assembly and recognition used to synthesize and surface guide next generation of hybrid materials. *ACS applied materials & interfaces* **2018**, *10* (34), 28372-28381.

3. Landers, T. A.; Greenberg, H. B.; Robinson, W. S., Structure of hepatitis B Dane particle DNA and nature of the endogenous DNA polymerase reaction. *Journal of virology* **1977**, *23* (2), 368-376.

4. Carlson, L.-A.; Shen, Q.-T.; Pavlin, M. R.; Hurley, J. H., ESCRT filaments as spiral springs. *Developmental cell* **2015**, *35* (4), 397-398.

5. Dong, C.; Dinu, C. Z., Molecular trucks and complementary tracks for bionanotechnological applications. *Current opinion in biotechnology* **2013**, *24* (4), 612-619.

6. Asenjo, A. B.; Sosa, H., A mobile kinesin-head intermediate during the ATP-waiting state. *Proceedings of the National Academy of Sciences* **2009**, *106* (14), 5657-5662.