Electronic Supplementary Information

Improved Oxygen Evolution Activity of IrO₂ by *in situ* Engineering of Ultra-Small Ir Sphere Shell Utilizing Pulse Laser

Wenwu Zhong, Zhiping Lin, * Shangshen Feng, Da Wang, Shijie Shen, Qinghua Zhang, Lin Gu, Zongpeng Wang* and Baizeng Fang*

Prof. W. W. Zhong, Dr. Z. P. Lin, Prof. S. S. Feng, Dr. S. J. Shen, Dr. Z. P. Wang Department of Chemistry and Material Engineering
School of Advanced Study
Taizhou University
Taizhou, Zhejing, 318000, P. R. China
E-mail: <u>zplin@tzc.edu.cn</u> (Z. Lin); <u>wangzp@tzc.edu.cn</u> (Z. Wang)

Dr. D. Wang, Prof. Q. H. Zhang, Prof. L. Gu Institution of Physics Chinese Academy of Science Beijing, 100190, China

Dr. Baizeng Fang Department of Chemical & Biological Engineering The University of British Columbia 2360 East Mall, Vancouver, B.C., V6T 1Z3, Canada E-mail: <u>bfang@chbe.ubc.ca</u>

Figure S1. Illustration of the experimental setup. A LBO crystal is used to double the frequency illuminated from the laser in order to make the light line visible.

Figure S2. A, B) SEM images of the b-IrO₂ and a-IrO₂, respectively, and C) EDX analyses of the b-IrO₂ and a-IrO₂. The ratios shown in Figure S2C are atomic ratios.

Element	Atomic Ratio (%)			
	b-IrO ₂	a-IrO ₂		
0	54.93	52.83		
Si	20.15	19.08		
Ir	24.92	28.09		

Table S1. EDX elemental analysis for the IrO₂ before and after the laser modification.

Table S2. ICP analysis for the IrO₂ samples before and after the laser modification.

Element	Normalized content of Ir (%)			
	b-IrO ₂	a-IrO ₂		
Ir	100	123		

Notes: The content of Ir in the a-IrO₂ was normalized by the content of Ir in the b-IrO₂.

Figure S3. A) TEM image of the a-IrO₂, and **B)** HRTEM image of the a-IrO₂: Small Ir spheres (ca. 2 nm) are distributed on the surface of an IrO₂ sphere with a large size (over 20 nm). The insets in A and B are the statistics for the Ir sphere diameter.

Figure S4. A) and B) TEM images of the b-IrO₂ and a-IrO₂, respectively.

Figure S5. HRTEM images of the $a-IrO_2$.

Figure S6. The enlarged TEM image of Figure 2C with reduced brightness.

	Crystal	Space group	a (Å)	c (Å)
Ir (JCPDS 46-1044)	cubic	Fm-3m(225)	3.840	-
IrO ₂ (JCPDS 15-0870)	tetragonal	 P42/mnm(136)	4.498	3.154

Table S3. Details of the crystal structures of Ir and IrO₂ summarized from their PDF cards

Figure S7. Raman spectra of the b-IrO₂ and a-IrO₂.

Figure S8. XPS survey spectra of the IrO_2 before and after the laser modification.

Figure S9. Bar chart for the summary of η_{10} values and Tafel slopes for the IrO₂ before and after the laser modification.

Catalyst	Electrolytes	Substrate	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	Reference	
RuO ₂	0.5 M KOH	FTO	358	55	ACS Nano 2015 9 1977	
IrO ₂	0.5 M KOH	FTO	411	91		
CaCu ₃ Fe ₄ O ₁₂	0.1 M KOH	GCE	400	51	N. G. 2015 (
CaFeO ₃	0.1 M KOH	GCE	390	47	Nat. Commun., 2015, 6 , 8249.	
SrFeO ₃	0.1 M KOH	GCE	410	63		
LaFeO ₃	0.1 M KOH	GCE	500	77	<i>Chem. Mater.</i> , 2016, 28 , 1691.	
MnFe ₂ O ₄	0.1 M KOH	GCE	470	114		
CoFe ₂ O ₄	0.1 M KOH	GCE	370	82		
NiFe ₂ O ₄	0.1 M KOH	GCE	440	98	Nanoscale, 2015, 7, 8920.	
CuFe ₂ O ₄	0.1 M KOH	GCE	410	94		
Co ₃ O ₄	1 M KOH	Au	400	49	<i>Chem. Mater.</i> , 2012, 24 , 3567.	

Table S4. Comparison of the OER performance of the $a-IrO_2$ and $b-IrO_2$ samples in alkaline solution with other representative OER catalysts reported in literature.

CoO _x -4h	1 M KOH	GCE	306	65	Nano Energy, 2018, 43 , 110.	
Au@CoFeO _x	1 M KOH	GCE	328	58	Nano Lett., 2017, 17 , 6040.	
CoO hexagrams	1 M KOH	GC	269	64.4	<i>Chem. Sci.</i> , 2018, 9 , 6961.	
CoCr ₂ O ₄	1 M KOH	GCE	422	63.3	<i>Small</i> , 2016, 12 , 2866.	
Fe-Ni nanoparticles	1 M NaOH	GCE	311	-	ACS Catal., 2016, 7, 365.	
Thin Ni–Fe hydroxide flm	1 M KOH	GCE	240	38.9	<i>Adv. Energy Mater.</i> , 2017, 7 , 1770044.	
Co _{0.54} Fe _{0.46} OOH	0.1 M KOH	GCE	390	47	Sci. Rep., 2017, 7, 43590.	
Ultrathin Co–Mn LDH	1 M KOH	GCE	324	43	J. Am. Chem. Soc., 2014, 136 , 16481.	
Co–Fe LDH (1:0.35)	0.1 M KOH	GCE	350	49	<i>ChemSusChem</i> , 2017, 10 , 156.	
CoCr LDH (2:1)	0.1 M KOH	GCE	340	81	<i>J. Mater. Chem. A</i> , 2016, 4 , 11292.	
Exfoliated Ni–Fe nanosheets	1 M KOH	GCE	300	40	Nat. Commun., 2014, 5 , 4477.	
Ni–Co 3D nanosheets	1 M NaOH	FTO	340	51	<i>Adv. Energy Mater.</i> , 2015, 5 , 1500091.	
Spindle-like ZnCo ₂ O ₄	1 M KOH	GCE	389	60	<i>RSC Adv.</i> , 2016, 6 , 92699.	
NiFe ₂ O ₄	1 M KOH	Carbon paper	360	40	ACS Catal., 2012, 2 , 1793.	
Co _{0.5} Mn _{0.5} WO ₄	0.1 M KOH	GCE	400	84	<i>ChemCatChem</i> , 2017, 9 , 1.	
Ni _{0.85} Fe _{0.15} O	0.1 M KOH	GCE	328	42	<i>Adv. Sci.</i> , 2015, 2 , 1500199	
LiCo _{0.8} Fe _{0.2} O ₂	0.1 M KOH	GCE	340	50	<i>Adv. Mater.</i> 2015, 27 , 7150	
LiNi _{0.8} Al _{0.2} O ₂	0.1 M KOH	GCE	340	44	<i>Adv. Mater.</i> , 2015, 27 , 6063.	
α-Co(OH) ₂	1 M KOH	GCE	380	67	Dalton Trans., 2017, 46 , 10545.	
γ-CoOOH nanosheet	1 M KOH	GCE	300	38	Angew. Chem. Int. Ed., 2015, 54 , 8722	
b-IrO ₂	1 M KOH	GCE	353	79.0	This stard a	
a-IrO ₂	1 M KOH	GCE	255	45.0	I nis study	

Figure S10. Cyclic voltammetry curves recorded in 1 M KOH at scan rates of 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 mV s⁻¹ for the IrO_2 before (a) and after (b) the laser modification. The voltage window is 0.85–0.95 V vs. RHE.

Turnover frequency (TOF) is calculated by the equation: TOF = j*A/(4*F*n), where j is the electrode current density, A is the geometric area of the electrode, F is the Faraday constant of 96485 C mol⁻¹, n is the molar number of the active metal sites (Ir in this case) that were deposited on the electrode.^{S1} The TOF of the a-IrO₂ is calculated to be 0.026 s⁻¹ per active site at overpotential of 270 mV, whereas the TOF value of the b-IrO₂ is only 0.0018 s⁻¹ per active site.

Electrochemically active surface area (ECSA): The ECSA of the catalyst can be calculated according to the equation: ECSA = C_{dl}/C_s , where C_{dl} is the double layer capacitance of the catalyst, C_s is the capacitance of the glass carbon electrode ($C_s = 0.040$ mF cm⁻²).^{S2} The LSV curves shown in Figure 4A are normalized by the ECSA, and shown in Figure S11.

Figure S11. The LSV curves normalized by ECSA.

Table S5. Summary of the electrochemical data obtained for the IrO_2 before and after the laser modification.

Sample —	OER	OER Activity		EIS	
	η @ j ₁₀ (mV)	Tafel Slope (mV dec ⁻¹)	$(mF cm^{-2})$	$\boldsymbol{R}_{s}\left(\Omega ight)$	$\boldsymbol{R}_{\mathrm{ct}}\left(\Omega ight)$
b-IrO ₂	353	79	2.01	8.72	238.80
a-IrO ₂	255	45	6.36	12.56	70.08

 η : overpotential; j_{10} : current density of 10 mA cm⁻²; C_{dl} : double layer capacitance; R_s and R_{ct} : electrolyte resistance and electron transfer resistance in the equivalent circuit.

Figure S12. Time dependence of the overpotential recorded on the various IrO₂ materials.

Figure S13. XRD patterns of the a-IrO₂ after the stability test. The impurity $HK_2(CO_3)_{1.5}(H_2O)_{0.75}$ may be generated by the reaction between the carbon cloth substrate and the electrolyte KOH.

Figure S14. XPS spectra of the a-IrO₂ after the stability test.

Figure S15. HRTEM images of the a-IrO $_2$ after the stability test.

References

- S1. M. Gong, Y. Li, H. Wang, Y. Liang, J. Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc., 2013, 135, 8452-8455.
- S2. C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, and T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. *J. Am. Chem. Soc.*, 2015, **137**, 4347-4357.