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Supplementary Figures

Supplementary Video 1 Caption: Simulation trajectory showing the self-assembly of a
single layer crystal using colloids with N, = 40 ligands (see Main Fig. 4).
Supplementary Video 2 Caption: Simulation trajectory showing the self-assembly of a
two-layer crystal using colloids with Ny, = 40 ligands (see Main Fig. 4).

Supplementary Video 3 Caption: Simulation trajectory showing the self-assembly of a

three-layer crystal using colloids with N, = 40 ligands (see Main Fig. 4).
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Figure S1: Pair interaction of surface-bound particles (Case IV). Two particles
in direct contact with the surface express the same type of free linkers resulting in pair
interactions weaker than in bulk. The system parameters are given in the caption of Main
Fig. 1.
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Figure S2: Self-assembly directed by functionalized interfaces always leads to crys-
tals with filled top layers. We report the number of adsorbed colloids versus time obtained
in simulations using different chemical potentials (piq ~ exp[Su]). The dashed lines mark
the number of colloids compatible with an integer number of layers, I'. We used Np, = 40,
BAGy = BAGS + 1 = —9, and receptor density op = 1.8 - L2
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Figure S3: Mean field theory predictions of the averaged number of self-assembled
layers. Effect of the number of ligands, the density of the gas phase, and ligand-ligand
hybridization free-energy on the thickness of the self-assembled crystal. In panel (a) we used
BAGy = —9 while in panel (b) pg = 2.72-107°L73. We used SAG{ = BAG, — 1 and
receptor density og = 1.8 - L2,
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Figure S4: Effect of the ligand-receptor hybridization free energy on the crystal
thickness. While decreasing AGj, the averaged number of layers increases until reaching an
asymptotic value. When not varied, we set SAGy = —9, Ni, = 40, and piq = 1.1-107° - L=3,
For the receptor density we use og = 1.8 - L2,
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Figure S5: Counting the number of ways of forming a given set of linkages {n}.
Nieleet (see Main Eq. 6) is the number of ways of selecting the ligands/receptors to be used
to form each type of linkage entering in {n}. Npa is the number of ways of binding the
preselected ligands/receptors.
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Figure S6: Definitions of the variables used in the mean field calculation. We
consider fce (111) crystals in which each colloid is surrounded by six particles belonging to
the same layers (i) and three particles belonging to the upper (i + 1) and/or lower (i — 1)
layer (for simplicity the figure reports at most four neighbors). Particles belonging to a
given layer ¢ feature the same type of linkages and carry the same number of free A and B
binders, 7 and m2. The particle in the first layer faces a surface area AMF) estimated using
simulations. Accordingly, the total number of receptors NéMF) is defined by the receptor
density og. In Main Figure 5 we used AMF) = 10.31 x 10.31 - L? while in Main Figure 6
AMF) — 11,0 x 11.0 - L?. Particle-particle and particle-surface distances have been fixed to
11 - L and 5.7 - L, respectively.
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Figure S7: Analytic approximations of the multivalent free energy match the
results of the full theory. For the three different number of ligands (Vi) considered in
the present work, we compare the multivalent free energy as provided by the full theory
(A fiai(h), see Eq. S25) with the analytic predictions of a simplified theory (A f.qi(h), see
Eq. S28) proving their consistency.
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Supporting Information

S1 Calculation of the multivalent free energy of the sys-
tem

We calculate the partition function of the system at a given colloids’ configuration {r} and
number of linkages {n} (see Main Eq. 1) leading to the multivalent free energy Fruei({r}, {n})
—kpTlog Z({r},{n}). We start by computing the number of ways of making a certain set

AB _AB AB _ACY (it} ;i _ : St
g e, mio, np o} with @ = 1,--- Ny and 4 < j. First, we count

of linkages, {n} =
the number of ways, M, Of selecting the binders (ligands and receptors) used to form a
certain type of linkage (e.g., a bridge of type AB between particle ¢ and particle j, see left
and central panel in Fig. S5). The number of ways of selecting ngB, niB, and n2C A ligands

on particle 7 to be used to form, respectively, the bridges with particle j (j = 1,--- , N,),

the loops, and the surface—particle bridges is

i [ Nu\ (N, —n® H Ny, —nyP — Zj—lp;ﬁl i
select,A TLAB nAC

ZZ 3 ‘7752 ’L]
Ny
Ay, AC) ABI; AB[’ (Sl)
n A g, nib!
where n* is the number of free A ligands
A AB AC AB

J#

Similarly, the number of ways of selecting the B linkers on particle ¢ and the receptors are

. N !

() B

select, B — B'?’LAB'H BA' n, = L_n § nzg ’ (83)

j#i i J#i
N¢!
: C AC
-/\/select,C = m ng :NC_§ n; -, (84)
nd! T2 ni ™! i
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where n is the number of free receptors on the surface. Finally, Meer reads as

N;elect - select C H select A selectB] . (85)

After selecting the ensemble of ligands /receptors to be used to form linkages {n}, we calculate
the number of ways, My, of reacting the pre-selected binders (see right panel of Fig. S5).
Noticing that there are, for instance, nAB‘ ways of binding n B A ligands on particle ¢ with

AB B ligands on particle j, we obtain

Noair = H [nfc!nﬁB!} H [ngB'ngA!} ) (S6)

% 1<j

Finally, the combinatorial term associated to configurations with a given set of linkage {n}

is

Cl A) Bl ,AB[ . C| AB| ,BA|
! nitt n2l ngPlnd! ng;ol it

N¢! NN 1 1 1 1
-/\[comb = A/;elect X Npair - < |: : - _1 H |: 1 (87)
i i<j
To derive the final expression of Z, we multiply Neom, by the Boltzmann factor accounting
for the hybridization free energy of binding a set {n} of linkages (see Main text for the

definitions)

. NLIN e8P AGi({r}) ¢ BOPHENAG (D [ Nl Yo o -BnCac; ()

= H nAInBInAB| H AB|nBA! nCl nAC)
i=1 Z 7 (22 j<q jq S i=1 2
Zr—oo({r}). (S8)

Zr_ denotes the partition function of the system when no linkages are formed (as found
at high temperature). Zr_., is related to entropic, repulsive forces due to the reduction
of the configurational space of the DNA linkers compressed by two approaching surfaces.
Neglecting excluded volume interactions between linkers, as often done when modeling DNA

mediated interactions, and defining by €y and Q;({r}) the volume of the configurational
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space available, respectively, to a single ligand tethered to particle ¢ at infinite dilution and
at finite density (similar definitions follow for the configurational space of receptors tethered

to the surface, Y and Q°({r})) we find

Zre({r)) = e PPr=(lrh) — <%§})) e ﬁ <Qig;}))NL+NL VU (S0)

In the previous expression, V({r}) accounts for additional (e.g. electrostatic) interactions
between colloids. We use V({r})) to regularize hard—core repulsions with negligible effects
on the final results. Below (see Sec. S1.1), we report the expression of V' ({r}) that has been
used in this work.

In this work we consider reactive sequences tethered to particles’ surfaces through short, thin
rods of double-stranded DNA of length L. When L is much smaller than the radius of the
particles, the reactive sequences of unbound linkers are uniformly distributed within the layer
of thickness L surrounding the tethering surfaces. We then have Qy = 47 R?L, Q = AL
(where A is the area of the surface). Similarly, the configurational volumes defining the

hybridization free energies (see Main Eqs. 4) read as

Q({r}) = Qo—€(ri.) — Z eij(|ri — ;)

JEv(3)

C({r}) = Q- ki(r) (S10)

1€V

where e;; and €} are, respectively, the volume excluded to the reactive sequence of a linker
tethered to particle ¢ by the presence of particle j and the surface (see Main Fig. 2). k§ is the
volume excluded to a reactive sequence tethered to the surface by the presence of particle
i (see Main Fig. 2). (i) and vy are the lists of particles in direct contact with ligands
on particle ¢ and receptors on the surface. Similarly, the configurational space of bound
sequences (€2;; and ) is the volume of the overlapping regions spanned by the reacting

sequences before binding (see Main Fig. 2). We report the explicit expression of the terms
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appearing in Main Eqgs. 4 and Eqgs. S10 in Sec. S1.2.
At given colloid positions, {r}, the most likely number of linkages featured by the system,

{m}, are calculated by maximizing the multivalent free energy

%fwm({n})un}:{n} ~0. (S11)

The previous set of equations, along with the definition of Fi, Eq. S8, lead to the chemical
equilibrium equations reported in Main Eqs. 3. Main Eqs. 3 become equivalent to the

following set of equations for the number of unbound linkers

_ N
mn: —_= S —

i 1+ ﬁgefmci({r}) + Zj@(i) n?e—mcﬁ({r})
e = Ny

1+ Zj@(i) ﬁjAe*BAGij({r})
N,

—C C
ng = s ) S12

S 1+ Zjevs ﬁJAG—BAGj({r}) ( )

that are used to implement self-consistent calculations in our simulations (see Sec. S3). When
written in term of the stationary number of linkages, the multivalent free energy simplifies

into the expression reported in Main Eq. 5.

S1.1 Modeling hard—core repulsion

We use smooth pair potentials to regularize particle—particle and particle—surface hard—core
repulsions (V' ({r}) in the Methods section of the main text). Following previous investiga-

tions, the repulsion between colloids is modeled using

4rR2-(0.75-L)

Vop(Tij) = (513)

500 log (1—w> ry <2 R+075-L
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where 7;; is the distance between particle i and j, and e;; is defined below (Eq. S18). Similarly,
if r; , is the distance of particle ¢ from the surface, the surface-particle repulsion is modeled
using

5mbg@—iﬁﬁﬂﬂ>rm<R+om.L
‘/i)s (ri,z) — 47‘('R2 (075 L) , (814)

0 rin > R+0.75- L

where €} is defined in Eq. 519. Finally

VIHrH =Y Viplr) + ) Vislria) - (S15)
i<j i

Such smooth regularizations allow using larger integration steps At (see the Methods section
of the main text) with negligible effects on the results of the manuscript. The latter claim
follows from the fact that the typical surface-to—surface distance is comparable with L while
Vop(rij) > 0 and Vis(r5,) > 0 only when r < 0.75 - L. V,,, and V4 are effective potentials
resulting from coating particles with inert strands (not carrying sticky ends) of length 0.75- L.
This observation justifies the particular choice of V' given the fact that, in experiments, inert

binders are often used to screen non-selective attractions (e.g., van der Waals forces).

S1.2 Configurational terms

Below we report the analytic expressions of the overlapping volumes defined in Main Fig. 2b

and used to calculate the hybridization free energies and the on rates (see the Methods
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section in the main text)

Qj(rij, L) = Vparpar(Tij; R+ L, R+ L) — 20par par (735, R, R) (S16)

Q?(ri,za L) = Uparsurf (Ti,z - La R + L) — Upar,surf (Ti,za R + L) — Upar,surf (Ti,z - La RXS17)

61']'(7"@']', L) = ’Upar,par(rija R + L, R) <818>
ezs‘(rl}za L) = ’Upar,surf(ri,za R+ L) (819)
kzs (Ti,za L) = Uparsurf (ri,z - L, R) (820)

where Vpar par (7, R1, R2) and vpar sme(r, R) are, respectively, the overlapping volume between
two spheres of radius R, and Ry placed at distance r and the volume of a spherical cap of

radius R with base placed at distance r from the center of the sphere:

Voarpar (73 R1, Ry) = % (Ri+ Ry — 1) (r? + 2rRy + 2rRy — 3R? — 3R2 + 6R, Ry{S21)
Vparsut(r, B) = g (R—1)2 (2R +7) (S22)

S2 Mean Field Theory

We detail the calculation of fiu (see Main Eqs. 9) used to predict the probability of self-
assembling crystals with ' layers (see P(I') defined in Main Eq. 10). fuuu(I) is the free
energy of an fcc (111) crystallite comprising I' layers as compared to a reference state in
which particles are isolated and only feature loops, normalized by the number of particles in
direct contact with the functionalized surface. We first calculate the number of free binders
and free receptors on the particles belonging to layer ¢ along with the number of free receptors

A 7P, and m¢ in Fig. S6). We consider particles distributed on an fee (111) crystal with

(ﬁz’ ’
fixed particle—particle and particle-surface distance. Therefore, the free energy of making
inter—particle bridges (AGP) is constant and is calculated using Main Eq. 4. Similarly, AG!

and AG®* are the hybridization free energies of forming loops and particle-surface bridges.
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We calculate AGP* using a surface area AMY) corresponding to the averaged surface per
surface—bound particle as sampled in a representative simulation (notice that AMF) affects
AGP* through ©°, see Main Eq. 4). Accordingly, we fix the number of receptors NéMF) to
NéMF) = o - AMF) where op is the receptor density.

Using Eqgs. S12 we write the total number of free binders on the surface and on the particles

belonging to the first layer as

o NP

s 1 + 7 exp[— BAGPS]
e = M

b 14786 - exp[—BAGP] + exp[—BAG) + 3 - B exp[—BAGP] 4 A exp[—BAGPS]
o= M

Y 14726 - exp[—BAGP] + exp[—BAGY) + 3 - 4 exp|—BAGP]

where in the expression of 7} and nP we set m5 = n5 = 0 when calculating the free energy

of single-layer crystals (I' = 1 in Fig. S6). For particles in the intermediate layers 1 <i < T’

we have
N M,
© T T P(6- oxp[—BAGH] + exp[—BAGY) + 3 - (AP, + TB,,) exp|—BAGY]
s M
" 1416 exp[-BAGP] + exp[-BAGY) + 3 (W}, + Ty, ) exp[—BAGY]
while for the last layer (if I' > 1)
TA Ny
T T TS 7R(6- exp|-BAGY] + exp|—FAGY) + 3 - TP, exp|—BAGH
—-B NL
nl—‘ -

1 +7n2(6 - exp[—BAGP] + exp[—BAGY) + 3 -mh_| exp|—BAGY]

We define by 7 and m5 () = np) the number of free binders of particles isolated in bulk

(therefore featuring Ny, — 7 loops). M or my is calculated by setting AG® = +oo and

AGP® = +00 in one of the previous equations.
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The free energy of I' isolated particles in bulk reads as (see Main Eq. 5)

—A —B
BFy(T) =T | Ny log % + N log J% + (N, -7 (S23)

where Ny, — 8 is the number of loops featured by each particle. On the other hand, the

free energy per surface—bound particle of crystals with I' layers (see Fig. S6) is given by (see

Main Eq. 1)

¢ Nog—71C o A 78 (Na+ Np) -7t — 7P
F{') = N¢log — + —— Ny log — + Np 1 - ! :
BF(T) CogNC—l— 5 +;[LogNL+ LogNL—l— 5

(S24)

Notice that in the configuration of Fig. S6 particles are sufficiently distanced that Fr_., = 0.
Finally, foui(I) (Main Eq. 9) used in the definition of P (Main Eq. 10) and A fru4:(I) (see

Main Fig. 5a-c) are given by

fmulti(r) = F(F) - FO(F) Afmulti(F) = fmulti(F) - fmul‘ci(F - 1) : (825)

To calculate the equilibrium layer distribution P(I"), we also need to estimate the entropic
loss of caging colloids from the gas phase into a site of the crystal. We employ a cell model in
which we assign a configurational space volume equal to vy to each particle in the solid phase.
Following Main Refs. [42,43] we use vy = (L/2)3, where we identify L with the interaction
range of a square well potential. We study the sensitivity of our results to vy in Main Fig. 8.
The probability of assembling I" layers from a diluted colloidal suspension at density p;q reads
as P(T') = 1/Zypr - exp[—B fuui(D)] (piavo)t, where piq ~ exp[Bu], p is the chemical poten-
tial of the particles, and pjq is small enough to justify an ideal representation of the gas phase.
Zyier is a normalization factor that is well defined (i.e. Zypr = Yoo g €xXp[—8 fuunei (T)] (piavo)" <
o0) conditional on the gas phase being stable in bulk. To extract the phase boundary in

bulk, we notice that for I' — oo surface effects are negligible and f,.4;(I") reads as A f(o0)-T',
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where A fiui(00), A foati(00) = Hmr oo frnuei () — fmui (I — 1), is the multivalent free en-
ergy per particle in an fcc crystal as compared to the gas phase. The gas—solid boundary
in bulk (see Main Figs. 3b, 3¢, and 4) is given by the relation exp[—FA fiuti(00)]piave = 1
or BA foui(00) = log(piquo) that, in the diluted limit p;q — 0, matches existing cell models
Main Ref. [43].

S2.1 Analytic predictions

In this section we extract compact analytic expressions allowing to estimate A fiue (see
Eq. S25). We consider the low temperature regime in which AGy — —oo. Using Main
Eq. 5, we calculate the statistical weight of, respectively, particle-surface and particle—

particle bridges divided by the statistical weight of intra—particle loops as

bs __ exp[—BAGb’S} - Qf

YT Tep[pAG] T o
b _ oxp[=AAGT]
S [AG] T 0y (526)

In the previous expressions, we considered that for the colloidal arrangement used in the
MET (see Fig. S6) the configurational space of free binders is not excluded by any colloid or
the surface (; = Qo and % = Q). Note that €;; and Qf are not a function of the specific
particle i given that particle-particle and particle-surface distances are kept constant (see
Eq. S16). Once the first layer of particles is formed, each particle will present a number of

free ligands equal to

VOO POVE™ = Nu)2 + 4 NEDN(L+ 6x) — 3P (VE™ 4+ M)
21— x>+ 6x") |

M, =

(S27)

We now assume that when particles are added to the second layer, the number of particle—

surface bridges as well as the number of lateral bridges between particles in the first layer do
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not change. Such approximation allows calculating A fi,u1:i(2) only using M;. Similarly, by
calculating the number of free linkers featured by particles in the second layer (Ms, which is
only function of M), we can re-iterate the calculation of A fi,u:(3) for particles in the third
layer. In general, the free-energy gain of adding layer ¢ when particles in layer ¢ — 1 express

M;_; free linkers is

3Xb [Mifl — 3<NL + 4XbNL)} —A 1
A adi ) = N 1
faai(1) T I [0y B L E T VAR v
A — 3Xb(Mi_1 + NL)
N1 528
where
A = /30 /AMy Ny 4 330 [(Mioa)? + 6M; 1 Ny + V). ($29)

The number of free ligands per particle expressed by layer ¢ before attaching layer ¢+ 1 reads

as

A —3xPM; — 3PNy,
M, = . S30
2(1 + 3xb) (830)

Fig. S7 shows that the results of the analytic theory match the MFT predictions.

S3 Simulation details

We first calculate the force acting on particle ¢, f; in Main Eq. 6 and 7. When using the
implicit (IMP) scheme (see Main Sec. 2.2), the numbers of possible linkages are fixed to their

most likely values, {n} = {n} (see Main Eqgs. 12, 13). The force acting on particle i then
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reads as

pfi = =BV Fuui({7}, {r}) = =V, log Z({n}, {r})

P 0
= —wﬁfmulti({n}a {rDliny=m Ve A0} — mﬁfmulti({”}a {r) Ve {AGH =)

0
_ﬁa_rfmulti<{n}v {r}) |{n}:{ﬁ}

0

0
_8{AG} ﬁ}—multi({n}? {r})vri{AGH{n}:{ﬁ} - Ba—riFT:oo({r}) <S31)

where the second equality follows from the saddle point equations (Main Eq. 2) and the fact
that the only direct dependency of Fiui on {r} is due to Fr—., (see Eqs. S8 and S9). In

particular, we find

Np

B = =3 [WPV NG (D + MOV, AAGH(r) - (i + ) T )
- Y P mVAAAGH((r) + Ne g~ VasV((r). (532)

By using the definitions of AG we find

AV AGH({r}) = Vgiﬁ{}l;}) (S33)
Ve () | VeRu({r) | Ve lulir))

PACED = T T o) ) (830
s _ VrZQ]({I'}) Verb({r}) VI‘LQE({I.})

IVRAGHED = othy T ety e (535)

BVAG(Y) = et (536)
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so that Eq. S32 becomes
A [T (o ooy vy, TuBUID)
jz[ (I I R R (e &({r})

by Vel o ey mcm AV V({r}) ($37)

1<j<q<N, .7‘1 {r} 7 7 ° QS({r})

P,

Using Main Eqgs. 11, along with the fact that Q} and €;, are only function, respectively, of

r; and {r;, r,} we find

_ —AB —BA verZ](TU> —AB vl‘zeﬁ(TU)
Bt = Z){( + T )—ng(’fu) (7l 4 miP) ~ranu) )

jev(i
A 47l 7AB N (7”1]) 7AC Vi, (Ti,z)
—E R S | e
_7C Vo ki (ri2) o n —AB V€ (riz) o ‘ r
ey~ T ) S5 ey Vi) (338)

Qi({r})

When using the EXP algorithm (see Main Sec. 2.2), the linkages are evolved using the
Gillespie algorithm (see next section). In this case, f; is calculated as in the last equality of
Eq. S31 in view of the fact that {n} are not a function of {r}. Therefore, the expression of
f; used in the EXP case is identical to Eq. S38 when replacing {m} with the actual values of
the linkages {n}.

Concerning the grand-canonical Monte Carlo algorithm, insertion/removal acceptances are

given by
acCiys = min [1 v, exp [—BAF; ]}
ins — 7(Np+1) Pid P ins
) N, 1
aCCrem = min [1, — - — - exp [ BAFrem) (S39)
v Pid

where AF em/AFins is the change of the system free energy after removing /inserting a colloid
in the simulation box. To optimize the acceptances, we set AF,.m and AF, to zero when

the inserted /removed particle does not interact with any other particle or the surface.
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S3.1 Gillespie algorithm

In this section, we detail the implementation of the Gillespie algorithm that has been used
to simulate sticky-ends reactions in the EXP method.

At a given colloid configuration, {r}, we start calculating all on/of f rates of making/breaking
linkages

ko kow Ko ko ot Ko

as derived in Main Eq. 8. Notice that, for instance, k% is the on rate of making a bridge
between ¢ and j either using an A sticky end tethered to particle ¢ or j. While of f rates are
only function of AGj, or AGj, on rates also include configurational terms that are function
of {r} (see Main Eq. 8). Accordingly, the list of all possible reactions is specified by the

following affinities

] _ A _Brij ij _ B, _Aypij W __ A, Byii is _ A _Cris
aomAB =n,; nj kon’ aon,BA =N, nj kon’ Ao = T 1Y kon’ Ao = T T kon?
ij _ ,AB1j ij __ . BAjij W L s _ AC7,8
Ao AB = Ty Kot Ao, BA — T ko, o = niikog, o =1 Ko (540)

where, for instance, agl’ Ap refers to the possibility of forming a linkage between ¢ and j using

an A sticky end tethered to particle i. We then fire one within all possible reactions with

probability
ApBlLij B ALij A, B A, Clis
- iy ke, pi = ;g kg, ao g kg, T e N
on,AB T ) on,BA T ) on ) on )
Aot Aot Aot Aot
AB 1.1 BA 1.1J i AC 11,8
ij L Kogr ij LT Ko i MaiiRog is M kg <
DPosraB = v Dot BA = y  Poft = ) of — T s (541)
Aot Aot Aot Aot

where ai is the total affinity. Along with the type of reaction we sample the time for it to
happen (7), distributed as P(7) = exp|—7/atot)/atot, and increment a reaction clock Tyeac by

T. If Tyeac < At (where At is the simulation step), we update {n}, recalculate the affinities
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(Eq. S40), and fire a new reaction until reaching At.
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