Supplementary Information

Investigation of High Contrast and Reversible Luminescence Thermochromism of Quantum Confined Cs₄PbBr₆ Perovskite Solid

Jin Woo Choi,^{a†} Namchul Cho,^{b†} Hee Chul Woo,^a Byeong M. Oh,^c Jawaher Almutlaq,^d Osman M. Bakr,^d Sung-Hoon Kim,^{*e} Chang-Lyoul Lee,^{*a} and

Jong H. Kim*b

^{*a*}Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.

^b Department of Energy Systems, Soonchunhyang University, Asan 31538, Republic of Korea.

^c Department of Molecular Science and Technology, Ajou University, Suwon 16499.

- ^{*d*} King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Physical Sciences and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
- ^e Department of Textile System Engineering, Kyungpook National University, Daegu, 702-701 Republic of Korea.

E-mail: jonghkim@ajou.ac.kr (Jong H. Kim), vsepr@gist.ac.kr (Chang-Lyoul Lee), shokim@knu.ac.kr (Sung-Hoon Kim)

Full width half maximum (FWHM) broadening can be described with addition of temperatureindependent inhomogeneous broadening term and homogeneous photoluminescence (PL) emission broadening terms. In case of homogeneous PL broadening terms, acoustic homogeneous PL emission broadening term is proportional to the temperature, while optical (LO) phonon related to the function of Bose-Einstein distribution. Therefore, FWHM broadening depending on the temperature changes can be described as following equation.

$$\Gamma(T) = \Gamma_0 + \gamma_{ac}T + \frac{\gamma_{LO}}{\frac{E_{LO}}{e^{\frac{E_{LO}}{k_B T}}} - 1}$$

Equation S1.

 Γ_0 : Temperature-independent inhomogeneous broadening γ_{ac} : Homogeneous term from acoustic phonon γ_{L0} : Homogeneous term from LO phonon E_{L0} : Weakly dispersive LO phonon generation energy

The PL intensity of semiconductors can be expressed with radiative recombination rate, trap related exciton dissociation rate, thermal dissociation rate, and the thermal escape rate. Furthermore, contribution of PL intensity enhancement above 200 K due to the thermal escape of carriers through quantized energy was considered.

$$I(T) = \frac{I_0 + Ie^{-\frac{\Delta E_t}{k_B T}}}{1 + Ae^{\left(-\frac{E_a}{k_B T}\right)} + Be^{\left(-\frac{E_b}{k_B T}\right)} + C\left(e^{\frac{E_{LO}}{k_B T}} - 1\right)^{-m}}$$

Equation S2

- I_0 : PL intensity at 0 K
- I' : Density of trap state produced inside QDs
- ΔE_t : Activation energy for carrier generated from shallow trap
- E_a : Shallow trap related thermal activation energy
- E_b : Exciton binding energy
- k_B : Boltzmann constant
- E_{LO} : *W* eakly dispersive LO phonon generation energy
- m: Number of LO phonons involved in the thermal escape
- A, B, C: Proportional coefficient

The parameters, γ_{ac} , γ_{LO} and E_{LO} are determined by fitting equation S1 to the temperaturedependent full width half maximum (FWHM) as shown in Fig. S1.

Fig. S1. Temperature-dependent FWHM of (a) Cs₄PbBr₆ and (b) CsPbBr₃.

With the obtained E_{LO} , the exciton binding energy, E_b was determined by fitting equation S2 to the temperature-dependent integrated PL intensity.

As stated in the manuscript, the photoluminescence of Cs₄PbBr₆ originates from its zero-

dimensional structure, where the $[PbBr_6]^{4-}$ octahedrons are surrounded by Cs. In this structure, Cs prevents interactions among the Pb²⁺ ions and the Br vacancy defects ($[PbBr_5]^{3-}$) formed in the isolated $[PbBr_6]^{4-}$ octahedrons serving as radiative states for green light emission. Therefore, the Cs₄PbBr₆ PL is solely dependent on the Br vacancy defects (zero-dimensional)related radiative states, and is not affected by structural defect (three-dimensional) ones. For this reason, the parameters, *A* and *E_a* in equation S2 are ignored for Cs₄PbBr₆ and the fitting equation used for Cs₄PbBr₆ was,

$$I(T) = \frac{I_0 + I'e^{-\frac{\Delta E_t}{k_B T}}}{1 + Be^{-\frac{E_b}{k_B T}} + C\left(e^{\frac{E_{LO}}{k_B T}} - 1\right)^{-m}}$$

Equation S3

On the other hands, like other bulk semiconductors, the radiative state of the CsPbBr₃ perovskite is dependent on the structural defect states, and thus, A and E_a were considered. Meanwhile, because of the thermal relaxation of carriers in such bulk materials, the thermal escape process is ignored for CsPbBr₃ and thus, parameters C and m are not considered in equation S2. Therefore, the fitting equation for CsPbBr₃ is,

$$I(T) = \frac{I_0}{1 + Ae^{-\frac{E_a}{k_B T}} + Be^{-\frac{E_b}{k_B T}}}$$

Equation S4

where all the results are represented in the Table S1.

Table S1. The resultant fitting parameters for Cs₄PbBr₆ and CsPbBr₃.

	A	В	С	E_a [meV]	E_b [meV]	E_{LO} [meV]	I'	т	ΔE_t [meV]
Cs ₄ PbBr ₆	-	124616	2093	-	368.15	61.97	4.16	3.96	84.62
CsPbBr ₃	7.08	238.72	-	9.78	73.15	23.24	-	-	-

Table S2. PL lifetime of Cs₄PbBr₆ films in different temperature. The monitored wavelength was 520 nm. The PL decay curves were fitted by a tri-exponential function. The intensity-weighted average exciton lifetime (τ_{avr}) was $f_1\tau_1 + f_2\tau_2 + f_3\tau_3$, where f_1 , f_2 and f_3 are fractional intensities and τ_1 , τ_2 and τ_3 are lifetimes.

Film	$\tau_1(f_1)$ [ns]	$\tau_2(f_2)$ [ns]	$\tau_3(f_3)$ [ns]	χ^2	$ au_{\rm avr}$ [ns]
Cs ₄ PbBr ₆ film RT	1.80 (0.08)	10.16 (0.42)	43.00 (0.50)	1.084	25.91
Cs ₄ PbBr ₆ film 90°C	1.31 (0.07)	9.28 (0.35)	44.50 (0.58)	1.119	29.15
Cs ₄ PbBr ₆ film Re-RT	1.80 (0.09)	9.76 (0.42)	43.01 (0.49)	1.079	25.34