Electronic supplementary information (ESI) W₂C nanodots decorated CNT networks as highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media[†]

Yang Hu,^a Bo Yu, ^a Wenxin Li, ^a Manigandan Ramadoss, ^a Yuanfu Chen*^a

^a School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China

*Corresponding authors, emails: <u>vfchen@uestc.edu.cn</u>, Tel.: +86 028 83202710. Address: State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China

Fig. S1 Raman spectra of spray-dried CNT.

Fig. S2 Polarization curves of the $W_2C@CNT-S8$, commercial WO_3/CNT mixture and commercial WO_3 in 0.5 M H₂SO₄ and 1.0 M KOH.

In order to further check the HER activity of WO₃, the HER performance in both acidic and alkaline media of commercial WO₃ and commercial WO₃/CNT mixture has been performed, as shown in the Fig. S2. From Fig. S2, compared to W₂C@CNT-S8, the WO₃/CNT mixture and commercial WO₃ show much worse HER catalytic activities.

g. S3 SEM images of the W_2C/CNT .

Fig. S4 SEM images of the pure CNT networks.

Fig. S5 TEM image of W₂C@CNT-S8.

Fig. S6 Polarization curves for W_2C/CNT -S6, W_2C/CNT -S8, W_2C/CNT -S10 and W_2C/CNT in 0.5 M H₂SO₄ with a scan rate of 5 mV s⁻¹.

Fig. S7 The cyclic voltammograms (CV) of $W_2C@CNT-S6$ (a), $W_2C@CNT-S8$ (b), $W_2C@CNT-S10$ (c) and W_2C/CNT (d) are measured at various scan rates range from 0.205-0.305 V (vs. RHE) in 0.5 M H₂SO₄ solution.

Fig. S8 Polarization curves for W_2C/CNT -S6, W_2C/CNT -S8, W_2C/CNT -S10 and W_2C/CNT in 1 M KOH with a scan rate of 5 mV s⁻¹.

Fig. S9 The cyclic voltammograms (CV) of $W_2C@CNT-S6$ (a), $W_2C@CNT-S8$ (b), $W_2C@CNT-S10$ (c) and W_2C/CNT (d) are measured at various scan rates range from 0.205-0.305 V (vs. RHE) in 1 M KOH solution.

Fig. S10 (a, b) SEM images of the $W_2C@CNTS8$ after the HER stability test in 0.5 M H_2SO_4 .

Fig. S11 (a, b) SEM images of the $W_2C@CNTS8$ after the HER stability test in 1.0 M KOH.

Fig. S12 (a, b) TEM images of the W₂C@CNTS8 after the HER stability test in 0.5 M $H_2SO_{4.}$

Fig. S13 (a, b) TEM images of the $W_2C@CNTS8$ after the HER stability test in 1.0 M KOH.

Catalyst	Electrolyte	η_{onset} (η ₁₀ (mV	Tafel slope	Referenc
		mV))	(mV dec ⁻¹)	e
W ₂ C@CNT-S6	0.5 M H ₂ SO ₄	70	192	59.8	
	1 M KOH	60	186	60.7	
W ₂ C@CNT-S8	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	60	176	57.4	This work
	1 M KOH	40	148	56.2	
W ₂ C@CNT-S10	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	90	220	68.6	
	1 M KOH	80	213	63.8	
W ₂ C/CNT	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	110	240	72.3	
	1 M KOH	100	248	88.6	
W ₂ C/WC NPs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	N/A	310	108	1
W NPs	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	N/A	295	156	1
$W_2C@WC_{1-x}$	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	N/A	240	86	2
W ₂ C-WN/GnP	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	N/A	120	64.7	3
WC-CNT	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	15	145	72	4
	1 M KOH	16	137	106	
W@WC	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	N/A	264	85	5
WC nanowall	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	52	160	67	6
C-WP/W	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	N/A	109	79.8	7
W _x C@WS ₂	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	70.3	146	61	8
WS_2/WO_2	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	90	160	63	9
WSe ₂ /CNT	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	~120	230	59.7	10
P-WN/rGO	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	46	85	54	11
CoWS _x	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	95	N/A	78	12
WC	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	~120	~270	69	13
WS_2/rGO	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	150	300	58	14
CoW/CN	1 M KOH	31	98	125	15
WS ₂ /WC ₂ @NSPC	1 M KOH	80	205	72	16
p-WC _x NWs	1 M KOH	56	122	56	17
MoSe ₂ -CoSe ₂	1 M KOH	127	237	79	18
NiS_2/MoS_2	1 M KOH	69	204	65	19

Table S1. Comparison of HER performance for $W_2C@CNT-S$, W_2C/CNT and other non-noble metal-based electrocatalysts.

References

- S. Emin, C. Altinkaya, A. Semerci, H. Okuyucu, A. Yildiz, P. Stefanov, *Appl. Catal. B*, 2018, 236, 147.
- 2 I. Kim, S. Park, D. Kim, *Nanoscale*, 2018, **10**, 21123.
- 3 W. Chen, J. M. Schneider, K. Sasaki, C. Wang, J. Schneider, S. Iyer, S. Iyer, Y. Zhu, J. T. Muckerman, E. Fujita, *Chemsuschem*, 2014, 7, 2414.
- 4 X. Fan, H. Zhou, X. Guo, ACS Nano, 2015, 9, 5125.
- 5 Z. Chen, L. Duan, T. Sheng, X. Lin, Y. Chen, Y. Chu, S. Sun, W. Lin, ACS Appl. Mater. Inter., 2017, 9, 20594.
- 6 Y. Ko, J. Cho, I. Kim, D. S. Jeong, K. Lee, J. Park, Y. Baik, H. Choi, W. Lee, *Appl. Catal.* B, 2017, 203, 684.
- 7 L. Wu, Z. Pu, Z. Tu, I. S. Amiinu, S. Liu, P. Wang, S. Mu, Chem. Eng. J., 2017, 327, 705.
- 8 F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, Adv. Funct. Mater., 2017, 27, 1605802.
- 9 J. Wang, W. Wang, Z. Wang, J. G. Chen, C. Liu, ACS Catal., 2016, 6, 6585.
- 10 X. Wang, Y. Chen, F. Qi, B. Zheng, J. He, Q. Li, P. Li, W. Zhang, Y. Li, *Electrochem. Commun.*, 2016, **72**, 74.
- H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, *Angew. Chem. Int. Ed.*, 2015, 54, 6325.
- 12 P. D. Tran, S. Y. Chiam, P. P. Boix, Y. Ren, S. S. Pramana, J. Fize, V. Artero, J. Barber, *Energy Environ. Sci.*, 2013, 6, 2452.
- 13 H. Fei, Y. Yang, X. Fan, G. Wang, G. Ruan, J. M. Tour, J. Mater. Chem. A, 2015, 3, 5798.
- 14 J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, H. S. Shin, Angew. Chem. Int. Ed., 2013, 52, 13751.
- 15 H. Jin, J. Chen, S. Mao, Y. Wang, ACS Appl. Mater. Inter., 2018, 10, 22094.
- 16 Y. Li, X. Wu, H. Zhang, J. Zhang, ACS Appl. Energy Mater., 2018, 1, 3377.
- 17 B. Ren, D. Li, Q. Jin, H. Cui, C. Wang, J. Mater. Chem. A, 2017, 5, 13196.
- X. Wang, B. Zheng, B. Yu, B. Wang, W. Hou, W. Zhang, Y. Chen, J. Mater. Chem. A, 2018, 6, 7842.
- 19 P. Kuang, T. Tong, K. Fan, J. Yu, ACS Catal., 2017, 7, 6179.