
Topological insulator n-p-n junction in a magnetic
field: Supplementary Information

A. Sample preparation and device fabrication

BSTS single crystals were prepared by modified Bridgman technique in a home-built

furnace. Stoichiometric amounts of high purity starting materials(99.999%) were sealed in

evacuated quartz ampoules(∼ 10−5 mbar) and heated to 850◦C followed by slow cooling to

room temperature. Single crystals as large as∼10mm can be obtained as shown in Fig. S1(a).

Single crystals were characterized by X-ray diffraction(Fig. S1(b)), bulk electrical transport

measurements, Energy dispersive X-ray spectroscopy, Electron probe microanalysis and An-

gle Resolved photoemission spectroscopy(ARPES) measurements as shown in our previous

works. Specifically, ARPES measurements8 confirm that the chemical potential in our sam-

ples lies within the bulk band-gap, a primary requirement to obtain highly gate-tunable

topological insulator devices.

For device fabrication, we first exfoliate thin flakes of BSTS and hexagonal Boron

Nitride(h-BN) from BSTS single crystals and commercial h-BN powder(Momentive) re-

spectively onto two separate pieces of heavily doped p-type Silicon substrates coated

with 285/500 nm of SiO2. A transparent polymer stack consisting of polypropylene-

carbonate(PPC) spin-coated on polydimethylsiloxane(PDMS) films stuck to a glass sub-

strate is fixed to a micromanipulator stage. Using a custom-built setup housed in an Argon

glove box(<0.1 ppm O2), the polymer stack is used to pick up a suitable h-BN flake from

the SiO2 substrate. This flake is then aligned with micrometer precision to a suitable flake

of BSTS. The glass substrate is lowered until the h-BN and BSTS flakes are in contact.

After desirable alignment and contact between the two flakes is obtained, the polymer

stack is heated at ∼ 80◦C to melt the PPC layer which causes the h-BN flake to drop

down. The residual PPC is later removed by cleaning the sample in chloroform and acetone.

Subsequently, standard e-beam lithography is used to define electrical contacts followed by

e-beam evaporation of Cr/Au(10nm/70nm). Fig. S1(c) shows optical micrograph images of

representative devices.
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FIG. S1. (a) Single crystal of BiSbTe1.75Se2.25(b) X-ray diffractogram showing only (0,0,L) peaks

confirming single crystalline nature (c) Optical micrographs of h-BN/BSTS n-p-n type devices.

Scale bar=10 µm

B. Estimation of number of surface state channels using magnetoresistance mea-

surements

We employ magnetoresistance measurements to estimate the number of surface states

in our samples. Even in compensation doped topological insulator samples that appear

to be bulk-insulating, residual bulk conduction may not be fully suppressed at low tem-

peratures. Bulk carriers may therefore provide parasitic paths between the top and bot-

tom topological surface states, resulting in an effective surface state coupling. The pres-

ence of such coupling may dramatically alter the properties expected from p-n junctions

of ideal topological surface states, apart from inducing coupling between quantum Hall

edge states via residual bulk modes. To verify this is not the case, we use the weak

anti-localization(WAL) response of topological surface states to a perpendicular magnetic

field to estimate the number of surface states carriers. Magnetoresistance data is fitted to

HLN formula that described the weak anti-localization effect in a perpendicular magnetic
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FIG. S2. (a) Magnetoconductance for device A at different values of the top gate voltage VTG (b)

and (c) α and Lφ as a function of VTG extracted by HLN fits to (a) for devices A and B respec-

tively.(d) Magnetoconductance at different temperatures measured in device B. (e) α and (f) Lφ

extracted from HLN fits to (d)
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in the limit of strong spin-orbit

scattering. Here ∆Gxx is the change in sample conductivity, B is the applied magnetic field,

Lφ is the phase coherence length, and ψ(x) denotes the digamma function. The leading

constant α determines the number of uncoupled spin-orbit coupled channels, with a value

of 0.5 for each such channel. As shown in Fig. S2(a), a sharp cusp in conductance at zero

magnetic field indicates the presence of weak-anti localization effects. We measure magne-

toconductance for devices A and B at different values of the top gate voltage. As shown

in Fig. S2(b) and (c), the phase coherence length Lφ drops significantly in the hole-doped

regime compared to the electron doped regime, presumably due to lower electron mobility

on the hole-side. On the other hand, α = 1.5 ∼ 2 remains fairly constant in the entire

range of gate voltage. Most remarkably, this value of α represents the presence of 3-4 in-

dependent spin-orbit coupled channels that carry electrical current in our devices. These
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channels represent the top and bottom topological surface states, and the top and bottom

Rashba surface surface states. In samples that are thinner than ∼ 30-40nm, the two Rashba

surface states get coupled due to inter-band scattering and contribute to the WAL effect

as a single channel(giving α=1.5). This effect has been explored in detail in our previous

work1. For the present work, it suffices to show that the top and bottom topological surface

states are decoupled in our system, and they indeed contribute to electrical transport as

two separate channels. However in the quantum Hall regime, the presence of Rashba states

may interfere with the quantum Hall effect of the top/bottom topological surface states.

This possibility has been discussed in the main text(Sec: Discussion). We also explore the

WAL signature as a function of temperature, as shown in Fig. S2(d) for device B. While

α ∼ 1.5 remains roughly constant as a function of temperature till T ∼ 10K, Lφ shows a

temperature dependent decay as a power law given by T−0.36.

C. Estimation of carrier concentration and mobility

We perform Hall effect measurements to estimate the carrier concentration and mobility

in our devices. Fig. S3(a) shows the variation of the Hall resistance Rxy as a function of

magnetic field in the range from -7T to +7T at different values of the top gate voltage.

At positive values of VTG , the slope of Rxy vs. B is negative indicating n-type carriers.

As the top gate voltage is changed from positive to negative, the carrier type changes

sign as indicated by a change in slope of the Hall effect curves. The extracted carrier

concentration and mobility is shown in Fig. S3(b). In Fig. S3(c), we plot Hall resistance at

different temperatures at zero applied gate voltages. As shown in Fig. S3(d), with increasing

temperature, the carrier concentration increases while the carrier mobility plummets. This

behavior is a consequence of the compensation doping of our samples, and can be explained

as a consequence of activated hopping transport across a network of p-n junctions1. We note

that our analysis of Hall effect measurement is close to charge neutrality in our samples.

Such an analysis is intrinsically prone to error because electrical current is carried by both

electrons and holes in this regime and Hall effects from the two carrier types cancel each other

out, resulting in ‘zero’ slope. This leads to an overestimation of the carrier concentration(n =

B
Rxye

) and an underestimation of the Hall mobility.
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FIG. S3. (a) Hall effect measurement for device A at different values of top gate voltage VTG . (b)

Extracted carrier concentration and carrier mobility (c) Hall effect measurement in Device B at

different sample temperatures (d) Extracted carrier concentration and mobility at different sample

temperatures

D. Conductance fluctuations and tracking the charge neutrality peaks

The position of the two charge neutrality peaks varies as a function of both top and

bottom gate voltages(Fig. S4(a)).The cross-coupling between the top(bottom) surface state

chemical potential and the bottom(top) gate can be evaluated by measuring the tilt of the

trajectory of the charge neutrality point away from vertical(horizontal) axis in the VTG -

VBG space, and is mediated by an inter-surface state coupling capacitance. While the bare

Rxx vs (VTG -VBG ) data does feature this information( S4(b)), tracking the exact location

of the charge neutrality point becomes more effective by measuring conductance fluctuations

instead.

In Fig. S4(a) and (b), we plot the conductance fluctuations obtained from devices A and
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B at T=2K. This is obtained by subtracting a smooth background from the raw Rxx vs

(VTG -VBG ) data. Both devices show reproducible resistance fluctuations that follow well-

defined trajectories in the (VTG -VBG ) space. While these trajectories are clearly tilted

away from the horizontal/vertical axes, it is interesting to note that the trajectories are

not perfect straight lines. In fact, they are straight only near the charge neutrality points

(CNP). Away from CNP, these lines appear to deviate. This arises as a result of quantum

capacitance of the top and bottom topological surface states (TSS). We must bear in mind

that although the top/bottom TSS are metallic, they are characterized by zero density of

states at the Dirac point(unlike a true metal). This implies that charging of the two surface

states is governed not by the geometric capacitance of the device, but instead by the quantum

capacitance of the two TSS near CNP. On the other hand, as one moves away from CNP, the

quantum capacitance increases and eventually exceeds the geometric capacitance. At this

point, the charging of the device is governed by the geometric capacitances of the sample.

This effect is reproduced in our model calculations in Section E where clear deviations of

the CNP trajectories away from straight line trajectories are observed.

c d

Device B

T=2K

Device A Device B
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ba

FIG. S4. (a) Schematic of a TI slap with two different top and bottom surface state chemical

potentials (b) 2D map of Rxx vs VTG -VBG for device B at T=2K. (c) and (d) Conductance

fluctuations measured in devices A and B as a function of VTG -VBG . Dashed lines are guides to

the eye showing trajectories of conductance fluctuation peaks(dips)
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E. Electrostatic model
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FIG. S5. (a) Capacitance model of the top-gated region(region-1) (b) Gaussian pillbox method for

evaluating the electric field in the three different dielectrics

We use a charging model analysis2,7 to derive the electrostatics of the top-gated(region-1)

and back-gated(region-2) regions separately.

Region-1

For the top-gated region shown schematically in Fig. S5(a), we derive the following equa-

tions from charge conservation and voltage balance: From total charge conservation, we

obtain:

∆n1T + ∆n1U + ∆n1L + ∆n1B = 0 (1)

Next, we determine the electric field within each of the three capacitances, using a Gauss’

law. For example, to evaluate the electric field within the top-gate dielectric, we use a

Gaussian pillbox as shown in Fig. S5(b). The electric fields from each of the four metallic

surfaces is given as Ej = ∆nj/2εT where nj is the charge density on surface j, and εT

is the dielectric constant of the top-gate dielectric. The electric field at any point within

the dielectric of the top gate is given as ET = e(∆n1T − ∆n1U − ∆n1L − ∆n1B)/2εT =
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FIG. S6. (a) Top surface chemical potential and (b) bottom surface chemical potential as a function

of VTG and VBG . (c) Top surface filling factor and (b) bottom surface filling factor as a function

of VTG and VBG

e∆n1T/εT (using Eq. 1). From voltage balance across this dielectric layer, we obtain:

VTG − ET tT = e∆µ1U (2)

=⇒ VTG −∆n1T tT/εT = e∆µ1U (3)

=⇒ VTG −∆n1T/CT = e∆µ1U (4)

where tT is the thickness of the top dielectric, and CT is the top gate capacitance.

Similarly we derive two other voltage balance equations:

VBG −∆n1B/CT = e∆µ1L (5)

e(∆µ1U −∆µ1L) + (∆n1T + ∆n1U −∆n1L −∆n1B)/2CTI = 0 (6)

It is convenient to express the top and bottom gate voltages as a function of other
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parameters, this gives us the following equations:

VTG = ∆µ1U −
1

CT
[CTI(∆µ1L −∆µ1U)−∆n1U ] (7)

VBG = ∆µ1L −
1

CB
[CTI(∆µ1U −∆µ1L)−∆n1L] (8)

From the geometric values obtained from thickness measurement of samples, we obtain

the values of all capacitances. We take tT = 15nm, tB = 500nm and tTI = 20nm. The

values of dielectric constants are taken from previously reported values to be εT = 3, εB =

3.9 and εTI = 33. By solving these equations numerically, we obtain values of chemical

potentials (∆µ1U,L) and charge carrier densities(∆n1U,L). The simulated chemical potentials

on the upper and lower surfaces of the TI flake as a function of VTG and VBG are shown

in Figs. S6(a) and (b) respectively. In the presence of quantizing magnetic fields, Landau

level formation takes place. Using the chemical potential, the Landau level index(n) can be

obtained from the following relation for Dirac dispersions:

µ = sign(m)~ω
√
|m| (9)

where m = 0,±1,±2, ... take integer values, ω = vF
√

2πB/φ0. Here vF is the Fermi velocity

of the Dirac dispersion measured previously in our ARPES experiments, φ0 = h/2e is the

flux quantum and B is the applied external magnetic field. Notice that the Dirac dispersion

allows a zero energy LL state(Eq. 9) that does not move with changing magnetic field. This

imparts a dual character to the zero-Landau level, in that, it gets shared equally by holes

and electrons. This is the origin of the 1/2 filling factor of the zero LL, while all other LLs

contribute a filling factor of 1: ν = sign(m)(|m| + 1/2) The charge density can then be

obtained by multiplying the filling factor ν with the Landau level degeneracy factor(B/φ0)

giving n = Bν/φ0

Using Eq. 9, we can now find the corresponding filling factors on each surface of region-1

as a function of VTG and VBG . These are plotted as 2D color maps in Figs. S6(c) and (d).

Region-2

In a fashion similar to region-1, we derive the electrostatic equations of region-2. The

only difference here being that there is no boundary condition on the top surface, and the

top-surface state chemical potential needs to be evaluated self-consistently. The governing
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FIG. S7. (a) Capacitance model of the back-gated region(region-2). (b) Bottom surface state

chemical potential, (c) top surface state chemical potential, (d) bottom surface state filling factor

and (e) top surface state filling factor as a function of VBG

equations are as follows:

∆n2U + ∆n2L + ∆n2B = 0 (10)

VBG + ∆n2B/CB = ∆µ2L (11)

∆n2U = 2CTI(∆µ2L −∆µ2U) (12)

Using this we simulate the action of the back gate voltage VBG on the chemical potentials

of the bottom and top surface states. These are plotted in Fig. S7(b) and (c) respectively.

It is clear that the bottom gate exerts a much stronger control on the bottom surface state

chemical potential µ2L than on the top surface chemical potential µ2U . The corresponding

filling factor diagrams are plotted in Fig. S7(d) and (e).

F. Landauer-Buttiker formalism for edge state propagation

To determine the four terminal resistance in a configuration with strong electron density

gradients, we use the Landauer-Buttiker formalism4,5,10. First, we derive a general relation
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that is applicable to quantum Hall effect in any system with carrier density gradients.This

formula is then applied to the three cases discussed in the main text.

General formula

The Landauer resistance formula for multi-channel, multi-probe transport is given as:

Ii =
e

h

[
(Mi −Ri,i)µi −

∑
j 6=i

Ti,jµj

]
(13)

Where Ii is the current from the reservoir at contact i, Mi is the number of channels in

contact i, Ri,i is the total probability of reflection in contact i from all other contacts, and

Ti,j is the transmission probability from contact i to contact j. Conservation of current yields

the relation that Ri,i = Mi −
∑
j 6=i

Ti,j.

T

R

T

Rν

μUL

ν

μUR

μLL μLR

μS μD

FIG. S8. Schematic of Hall bar with density gradient at the center induced by a local top-gate

electrode. The filling factor in the un-gated region is ν. T and R are the transmission and reflection

probabilities of edge states across the top-gated region.

We consider a Hall bar sample with a density gradient induced by a top gate as shown in

Fig. S8. The filling factor in the non-gated region is ν. At this point, we model the top-gated

region as a scattering center, that can either transmit edge states with a probability T or

reflect them with probability R. S and D are the current source and drain respectively, while

the other four nodes are voltage probes. Applying Eq. 13 to nodes UL and S we obtain the

following two equations:

0 =
e

h
ν(µUL − µS) (14)

I =
e

h
ν(µS − µLL) (15)
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Combining these equations and repeating for nodes LR and D, we obtain the results for

standard quantum Hall effect:

I =
e

h
ν(µUL − µLL) =

e

h
ν(µUR − µLR) (16)

The effect of the gate-induced density gradient become apparent when we evaluate Eq. 13 at

nodes LL and UR. For example, at node LL, edge modes can be transmitted from node LR

by transmission over the gated region with probability T, and from node UL by reflection

at the gated region with probability R. We can therefore write:

0 =
e

h
ν(µLL − TµLR −RµUL) (17)

Similarly, for node UR, we can write:

0 =
e

h
ν(µUR − TµUL −RµLR) (18)

The four terminal resistance is given by RU = (µUL − µUR)/eI. By combining the above

equations, and using the fact that T+R=1, we obtain the following relation:

RU =
h

e2

(
1

Tν
− 1

ν

)
(19)

It is important to note that in our analysis, we did not make any assumptions about the

direction in which edge modes circulate in the gated region. That is, we could very well

have modes in the gated region, that travel in a direction opposite to that shown in Fig. S8.

The only assumption we use is R+T=1, which is justified by current conservation since no

additional current can be sourced or sunk in the gated region. This allows us to use this

relation in any general setting where quantum Hall modes propagate across carrier density

gradients. Only a case-by-case evaluation of the transmission probability T is required, as

follows:

Case-1: Unipolar regime with ν1 < ν2

In this regime, ν2 modes propagate in the un-gated region and a smaller number of ν1

modes propagate in the gated region as shown in Fig. S9(a).

Only the occupied modes carrying current from the left-lead to the right-lead are shown.

From the band-structure of Fig S9(b), it is clear that the mode(shown in blue) that is
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FIG. S9. (a) Edge state propagation in the unipolar regime with ν1 < ν2. (b) Band-structure

diagram as a function of position.

common to both the regions, propagates fully. Also, note that at the un-gated/gated region

interface, this mode does not cross the Fermi level, that is it does not propagate along the

interface. On the other hand, the excess mode in the un-gated region(shown in red) does

cross the Fermi level at the un-gated/gated region interface, and propagates not only along

the sample edge but also along the interface as shown in Fig. S9(a).

To evaluate the four-probe resistance, we need only to evaluate the transmission prob-

ability across the gated region, I = Iout/Iin. Since there are no excess modes in the gated

region, Iout = I1 = (ν1/ν2)Iin. This gives us T = (ν1/ν2). Applying Eq. 19, we get:

RU =
h

e2

(
1

ν1
− 1

ν2

)
(20)

Case-2: Unipolar regime with ν1 > ν2

In this regime, the number of edge modes in the gated region ν2 is larger than the number

of modes in the un-gated region ν1 as shown in Fig. S10(a). The band-structure shown in

Fig. S10(b) shows that all edge modes common to both the regions(shown in blue) propagate

from the left-lead to right lead without intersecting the Fermi level at the un-gated/gated

region interface. On the other hand, the excess modes in the gated region(shown in red)

intersect the Fermi level and therefore also propagate parallel to the un-gated/gated interface

as shown in Fig. S10(a).

To evaluate the transmission probability, we first note that in the gated region, under

the assumption of full mode mixing, the current I1 gets equally distributed among the ν1

common modes(blue) and the ν1 − ν2 excess modes(red). We therefore obtain the following

relations: I1 = Iin + I4, Iout = I2 − I1, I2 = (ν1 − ν2)/ν1,I1 = rI1, I3 = I2, I4 = rI3. This
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FIG. S10. (a) Edge state propagation in the unipolar regime with ν1 > ν2. (b) Band-structure

diagram as a function of position.

gives, Iout = (1− r)I1 and Iin = I1− I4 = (1− r2)I1. Therefore the transmission probability

T = Iout/Iin = 1/(1 + r) = ν1/(2ν1 − ν2). Substituting into Eq. 19, we obtain:

RU =
h

e2

(
1

ν2
− 1

ν1

)
(21)

Case-1: Bipolar regime with ν1 < 0, ν2 > 0

In the bipolar regime, the edge modes in the gated and un-gated regions propagate with

opposite chiralities. Therefore, no common mode appears between the two regions. The only

way current can flow from the left-lead to the right-lead is by mixing at the gated/ungated

interface where modes from both region co-propagate as shown in Fig. S11(a). The band-

structure diagram in Fig. S11(b) makes this adequately clear. All modes, originating either in

the ungated region(blue) or the gated region(red) cross the Fermi level at the gated/ungated

interface. This implies that all modes in the system are reflected at this interface. In the

extreme case, that co-propagating modes do not fully mix at the interface, no current will

flow from the left-lead to the right-lead. Here, we assume full mixing of modes, as would be

the case in a moderately disordered sample, implying that current I2 and I4 are carried by

|ν1|+ ν2 number of modes.

To calculate the transmission probability, we obtain the following relations: Iout = I2−I1,

Iin = I4 − I1, I1 = rI2 = |ν1|/(ν1 + |ν2|)I2, I2 = I3 and I3 = rI4. This gives Iout = (1− r)I2
and Iin = (1− r2/r)I2. Therefore we obtain: T = Iout/Iin = |ν1|/(2|ν1| + ν2). Substituting

into Eq. 19, we get:

RU =
h

e2

(
1

ν2
+

1

|ν1|

)
(22)
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FIG. S11. (a) Edge state propagation in the bipolar regime with ν1 < 0 and ν2 > 0. (b) Band-

structure diagram as a function of position.
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