Supporting Information

Boosting oxygen reduction activity of nano-graphene catalyst by charge redistribution at graphene-metal interface

Hukwang Sung,^{†a} Monika Sharma,^{†a} Jeonghee Jang,^a Sang-Young Lee,^b Myoung-gil Choi^a, Kyubock Lee^a, and Namgee Jung^{* a}

^aGraduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea

^bResearch Division, Environmental Technology Institute, COWAY, Seoul 08826, Republic of Korea

*Corresponding author: njung@cnu.ac.kr (N. Jung)

[†]These authors contributed equally to this work.

Fig. S1. TEM images and particle size distribution of (a) commercial Pd/C, (b) NGS_ASP, (c) NGS@300, (d) NGS@500, (e) NGS@700, and (f) NGS@900.

Fig. S2. TEM image and particle size distribution of commercial Pt/C catalyst.

Fig. S3. Nitrogen adsorption-desorption isotherms of (a) NGS@900, (b) Pt/C, and (c) carbon support.

Table S1. Specific surface areas and total pore volumes of NGS@900, Pt/C, and carbon support(Vulcan carbon) obtained by Brunauer-Emmett-Teller (BET) analysis.

Sample	NGS@900	Pt/C	Carbon support
Specific surface area (m ² /g)	163	204	244
Total pore volume (cm^3/g)	0.32	0.39	0.46

Fig. S4. XRD patterns of commercial Pd/C and NGS catalysts.

Fig. S5. (a) CVs and (b) CO stripping curves of NGS catalysts.

Fig. S6. Pd 3d core-level XPS spectra of NGS catalysts.

Fig. S7. (a) CVs and (b) CO stripping curves of commercial Pd/C and allyl mercaptan-modified Pd/C catalysts.

Koutecky-Levich plots:

The number of electrons transferred for ORR on NGS@900 and Pt/C catalysts was calculated according to the Koutecky-Levich equation:

$$1/J = 1/J_D + 1/J_K = 1/(B\omega^{1/2}) + 1/J_K$$

$$B = 0.62 n F C_0 D_0^{2/3} v^{-1/6}$$

where J_D is the diffusion-limiting current, J_K is the kinetic current, F is the Faraday constant (96485 C mol⁻¹), D_0 is the diffusion coefficient of oxygen in 0.1 M KOH ($1.9 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$), v is the kinematic viscosity of electrolyte ($1.09 \times 10^{-2} \text{ cm}^2 \text{ s}^{-1}$), C_0 is the bulk concentration of oxygen in 0.1 M KOH ($1.2 \times 10^{-6} \text{ mol cm}^{-3}$), ω is the angular velocity (rad s⁻¹), and n is the electron transfer number for the ORR.

Fig. S8. (a) LSV curves of NGS@900 at different rotation speed (400 to 2500 rpm) in O₂-saturated 0.1 M KOH at a scan rate of 5 mV s⁻¹. (b) Koutecky-Levich plots for NGS@900 catalyst at different potentials.

Fig. S9. (a) LSV curves of Pt/C at different rotation speed (400 to 2500 rpm) in O_2 -saturated 0.1 M KOH at a scan rate of 5 mV s⁻¹. (b) Koutecky-Levich plots for Pt/C catalyst at different potentials.

Fig. S10. (a) CVs and (b) CO stripping curves and (c) change in the metal surface areas of commercial Pt/C and NSG@900 before and after ADTs.

Fig. S11 ORR polarization curves of NGS@900 and Pt/C in 0.1 M KOH without (solid line) and with (dotted line) 0.5 M MeOH.