On the decay time of upconversion luminescence

Jan Bergstrand,^b Qingyun Liu,^a Bingru Huang,^c Xingyun Peng,^c Christian Würth,^d Ute Resch-Genger,^d Qiuqiang Zhan, ^{*c} Jerker Widengren,^b Hans Ågren,^{a,e} Haichun Liu^{*a}

^a Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, S-10691 Stockholm, Sweden

^b Department of Applied Physics, KTH Royal Institute of Technology, S-10691, Stockholm, Sweden

^c Centre for Optical and Electromagnetic Research, Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China

^d Federal Institute of Materials Research and Testing (BAM), Division of Biophotonics,

Richard-Willstätter-Str. 11, 12489 Berlin, Germany

^e School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Figure S1 UCL decay profiles under short-pulse upconversion excitation with different τ_2/τ_3 , given that (a) $\tau_5 = 100 \ \mu s$, (b) $\tau_5 = 200 \ \mu s$, (c) $\tau_5 = 1000 \ \mu s$, and (d) $\tau_5 = 2000 \ \mu s$

Table S1 Summary of constant parameters used in the simulations studying the effect of the

doping levels of activator ions

σ (cm ²)	$n_{S(\text{cm}^{-3})}$	$\tau_2 (ms)$	τ_{3} (ms)	τ_{5} (ms)	$W_{1} (cm^{3} s^{-1})$	$W_{2} (cm^{3} s^{-1})$
1.5×10 ⁻²⁰	1.5×10 ²¹	1.32	0.2	1.32	2.5×10 ⁻¹⁸	5×10 ⁻¹⁷

Figure S2 Upconversion luminescence decay profiles under short pulse excitation with different doping levels of activator ions

Figure S3 Transmission electron microscopic images of (a) NaYF₄:2% Yb³⁺, 5% Er³⁺, (b) NaYF₄:6% Yb³⁺, 5% Er³⁺, (c) NaYF₄:20% Yb³⁺, 5% Er³⁺, (d) NaYF₄:50% Yb³⁺, 5% Er³⁺, and (e) NaYF₄:80% Yb³⁺, 5% Er³⁺ nanorods