Electronic Supplementary Information

Associative Properties of Poly(ethylene glycol)-Poly(vinyl

acetate) Comb-like Graft Copolymer in Water

M. Mamusa, P. Tempesti, A. Bartolini, E. Carretti, A. F. Ghobadi, J. Smets, Y. G. Aouad, and P. Baglioni*

Table of contents:

1.	Flow curves of PEG-g-PVAc/H ₂ O binary systems	2
2.	Amplitude sweep of PEG-g-PVAc/H ₂ O binary systems	3
3.	Frequency sweep of PEG-g-PVAc/H ₂ O binary systems	4
4.	Calculations for H ₂ O/EO molecular ratio in PEG-g-PVAc 60 wt%	5
5.	DSC thermograms of PEG-g-PVAc/H ₂ O binary systems	6
6.	Summary of SAXS data fitting results	7
7.	SAXS patterns for PEG-g-PVAc 80 wt% and 90 wt% in water	8
8.	SAXS curves of PEG-g-PVAc/H ₂ O binary systems at different temperatures	9
9.	Dissipative Particle Dynamics (DPD) Simulation Protocol	10
10.	DPD Simulation Boxes	13
11.	References	14

1. Flow curves of PEG-g-PVAc/H₂O binary systems

Figure SI1. Flow Curves of PEG-g-PVAc/H₂O binary systems. Polymer weight contents are indicated in the figure legend.

2. Amplitude sweep of PEG-g-PVAc/H₂O binary systems

Figure SI2. Amplitude sweep of PEG-*g*-PVAc/H₂O binary systems containing 20 wt% (A), 30 wt% (B), 40 wt% (C), 50 wt% (D), 60 wt% (E), 70 wt% (F), 80 wt% (G), 90 wt% (H) polymer.

3. Frequency sweep of PEG-g-PVAc/H₂O binary systems

Figure SI3. Frequency sweep of PEG-*g*-PVAc/H₂O binary systems containing 20 wt% (A), 30 wt% (B), 40 wt% (C), 50 wt% (D), 60 wt% (E), 70 wt% (F), 80 wt% (G), 90 wt% (H) polymer.

4. Calculations for H₂O/EO molecular ratio in PEG-g-PVAc 60 wt%

In the DSC thermogram (heating step) for sample PEG-g-PVAc 60 wt% no endothermic peak relative to the fusion of bulk water is detected, meaning that all water molecules are bound to the polymer chains, reasonably to the PEG portion.

Considering 1 g of sample, 0.4 g are water and 0.6 g are polymer. PEG (Mw = 6 kDa) is 40 wt% of the total polymer weight, so the PEG weight in PEG-g-PVAc 60 wt% sample is 0.6 g * 0.4 = 0.24 g

The number of water molecules in 0.4 g is 0.4 g / 18 g/mol * 6.023 10^{23} molecules/mol = 1.34 10^{22} molecules.

The number of PEG molecules in 0.24 g is 0.24 g / 6000 g/mol * 6.023 10^{23} molecules/mol = 2.41 10^{19} molecules.

So, 1.34 10^{22} H₂O molecules/ 2.41 10^{19} PEG (Mw = 6 kDa) molecules \approx 555 H₂O molecules per PEG 6 kDa chain.

In a PEG 6 kDa chain there are about 136 EO units, so $555/136 \approx 4$ H₂O molecules per EO unit.

5. DSC thermograms of PEG-g-PVAc/H₂O binary systems

Figure SI4. DSC thermograms of PEG-g-PVAc in water in the 10-90% weight concentration range.

6. Summary of SAXS data fitting results

Table S1. Summary of salient parameters extracted from fitting of SAXS d	lata as discussed in the main
text.	

	Schulz forn	-spheres n factor	Two-Yukawa			Teubner-Strey						
PEG-g-PVAc content (wt%)	Sphere radius, r (Å) ± 0.6 Å	Schulz polydispersity, σ	Kı	Z 1	K2	Z ₂	a₂	C 1	C2	Correlation length, ξ (Å) ± 0.6 Å	Repeat distance <i>, d</i> (Å) ± 0.6 Å	d/ξ
10	58	0.18	1.1	4.6	-1.1	3.6	-	-	-	-	-	-
20	58	0.18	-	-	-	-	0.16	-222.9	98775	119	182	1.5
30	58	0.18	-	-	-	-	0.08	-90.7	31481	135	163	1.2
40	58	0.18	-	-	-	-	0.07	-81.4	25682	144	156	1.1
50	58	0.18	-	-	-	-	0.17	-147.7	35745	143	137	1.0
60	-	-	-	-	-	-	0.28	-199.4	40497	115	125	1.1
70	-	-	-	-	-	-	0.27	-176.9	34538	94	122	1.3

7. SAXS patterns for PEG-g-PVAc 80 wt% and 90 wt% in water.

Figure SI5. Small-angle X-ray patterns for PEG-g-PVAc 80 wt% and 90 wt% in water.

8. SAXS curves of PEG-g-PVAc/H₂O binary systems at different temperatures

Figure SI6. Small-angle X-ray patterns for PEG-*g*-PVAc/water systems at: A) 10 wt%, B) 20 wt%, C) 30%, D) 40%, and E) 50% polymer, acquired on a temperature range between 25 °C and 65 °C.

9. Dissipative Particle Dynamics (DPD) Simulation Protocol

In our DPD simulations, every 3-5 heavy atoms are coarse-grained into one DPD bead using an inhouse developed procedure. Every three water molecules are also coarse-grained into one DPD bead. Bead definitions are summarized in Table S1. Non-bonded interactions between beads follow the standard DPD potential,¹ in which a conservative intermolecular potential along with dissipative and random forces capture molecular interactions:

$$f_i = \sum_{j \neq i} (F_{ij}^{c} + F_{ij}^{D} + F_{ij}^{R})$$
(1)

where f_i is the total force on bead *i*, and F_{ij}^C is the conservative force defined by a purely-repulsive softcore potential that allows for larger time steps of picoseconds instead of the femtoseconds used in conventional MD simulations. The dissipative force (F_{ij}^D) and the random force (F_{ij}^R) take into account the fluctuations of energy and serve as the Langevine thermostat. Mathematically, each of these forces are defined as follows:

$$F_{ij}^{C} = -a_{ij}\omega^{C}(r_{ij})\hat{r}_{ij}$$

$$F_{ij}^{D} = -\gamma\omega^{D}(r_{ij})(\upsilon_{ij}\cdot\hat{r}_{ij})\hat{r}_{ij}$$

$$F_{ij}^{R} = -\sigma\omega^{R}(r_{ij})\xi_{ij}\Delta t^{-1/2}\hat{r}_{ij}$$
(2)

The repulsive parameters a_{ij} are dependent on the chemical identity of beads i, j. \hat{r}_{ij} is a unit vector in the direction of r_{ij} and $r_{ij} = |r_i - r_j|$. The weight function ω^c is defined as:

$$\omega^{c}(r_{ij}) = \begin{cases} 1 - \frac{r_{ij}}{r_{cut}} & \text{if } 0 \le r_{ij} \le r_{cut} \\ 0 & \text{if } r_{ij} > r_{cut} \end{cases}$$
(3)

where r_{cut} is the truncation distance. The parameters σ , γ are set to obey the dissipation-fluctuation theorem with $\sigma^2 = 2\gamma$ and $\sigma = 3.56$. The quantity $v_{ij} = v_i - v_j$ is the relative velocity between beads *i* and *j*. ξ_{ij} is a Gaussian distributed random variable with zero mean and unit variance and Δt is the integration time step. The weight function ω^R is the same as ω^C . Finally, ω^D is defined as $\omega^D = (\omega^R)^2$. The repulsive parameter a_{ij} is transferable by design, and is derived by relating to the Flory-Huggins χ parameters obtained using COSMO-RS theory.² The relation between the a_{ij} and the Flory-Huggins theory is outlined in this paper.³ Transferable harmonic bonds and angles are defined as necessary, and parameterized to reproduce atomistic distributions obtained from COMPASS force field.⁴ Further refinement of the DPD non-bonded parameters was applied to account for the pressure drop due to formation of bonds. All non-bonded and bonded parameters are summarized in the attached parameter file.

Bead name	Representing chemistry
WAT	Three water molecules
EO	Middle polyethylene glycol monomer: -O-CH ₂ -CH ₂ -
ΕΟΤ	Terminal PEG monomer: -O-CH ₂ -CH ₃
ЕОН	Terminal PEG monomer: -CH ₂ -CH ₂ -OH
EOB	Grafting point on PEG backbone: -CH ₂ -CH{}-O-
MVAc	Middle polyvinyl acetate monomer: $-CH_2-CH_{-O-C_{=O_3-CH_3}-CH_3}$
TVAc	Terminal polyvinyl acetate monomer: -CH ₂ -CH ₂ {-O-C{=O}-CH ₃ }

Table S2. DPD bead definition. {} indicates branching in the chemical structure.

All simulations are performed using LAMMPS molecular dynamics package.⁵ Initial configurations and molecular topologies are prepared using Culgi software (https://culgi.com). The truncation distance (r_{cut}) of the potential is set to 1, which is used to define the reduced length unit. In this work, we define the number density of water beads as $\rho_{ref} = 5.0$, with three water molecules in each bead. Hence, a DPD unit volume (r_{cut}^3) contains 15 water molecules. Given the macroscopic density of water, this volume corresponds to 15×30.07 Å³. The unit length in our simulations hence corresponds to $\sqrt[3]{v_{ref}\rho_{ref}} = 7.66$ Å 3 at a reference molecular volume $v_{ref} = 90.0$ Å³ (which is the volume of three water molecules under ambient conditions). We also opt for an energy unit that corresponds to T = 300 K at k_BT = 1, where k_B is Boltzmann constant. The DPD friction coefficient (γ) is set to 6.36. The nonbonded 1-4 interactions are not scaled. The DPD thermostat is used to keep the temperature constant at T = 1 (reduced units, corresponding to 300 K). The equation of motion is integrated using the Velocity-Verlet algorithm with a time step of 0.015 (reduced units). Further details on the choice of units and parameters are discussed in this paper.⁶ The simulation box is rectangular 60×60×160 (reduced units), and periodic in all directions. The number of polymer chains varies between 26-129, and the number of water beads is between 1 to 3 million, to retrieve polymer concentrations between 10 to 90 wt%. Polymers are simulated with polydispersity index of 1. All simulations start with a random configuration of polymers in water, and are relaxed for 1.5×106 steps in NPT ensemble with P = 41.89 (a preset reference pressure³) and pH = 7. The production run is 1.5×106 steps during which configurations are stored every 20000 timestep for post-simulation analysis. Visualization is performed by VMD software.

10. DPD Simulation Boxes

[PEG-g-PVAc]	Simulation box	Polymer only		
80%				
90%				

Table S3. DPD simulation boxes showing water (yellow), PEG-g-PVAc copolymer (grey), PEG only (blue), and PVAc only (red) at equilibrium.

11. References

- (1) Groot, R. D.; Warren, P. B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. *The Journal of Chemical Physics* **1997**, *107* (11), 4423–4435. https://doi.org/10.1063/1.474784.
- (2) Klamt, A.; Eckert, F. COSMO-RS: A Novel and Efficient Method for the a Priori Prediction of Thermophysical Data of Liquids. *Fluid Phase Equilibria* **2000**, *172* (1), 43–72. https://doi.org/10.1016/S0378-3812(00)00357-5.
- (3) Liyana-Arachchi, T. P.; Jamadagni, S. N.; Eike, D.; Koenig, P. H.; Siepmann, J. I. Liquid–Liquid Equilibria for Soft-Repulsive Particles: Improved Equation of State and Methodology for Representing Molecules of Different Sizes and Chemistry in Dissipative Particle Dynamics. *The Journal of Chemical Physics* **2015**, *142* (4), 044902. https://doi.org/10.1063/1.4905918.
- (4) Sun, H. COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. *The Journal of Physical Chemistry B* **1998**, *102* (38), 7338–7364. https://doi.org/10.1021/jp980939v.
- (5) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. *Journal of Computational Physics* **1995**, *117* (1), 1–19. https://doi.org/10.1006/jcph.1995.1039.
- (6) Tang, X.; Zou, W.; Koenig, P. H.; McConaughy, S. D.; Weaver, M. R.; Eike, D. M.; Schmidt, M. J.; Larson, R. G. Multiscale Modeling of the Effects of Salt and Perfume Raw Materials on the Rheological Properties of Commercial Threadlike Micellar Solutions. *The Journal of Physical Chemistry B* 2017, *121* (11), 2468–2485. https://doi.org/10.1021/acs.jpcb.7b00257.