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We consider the system of two semi-infinite ferroma-
gnetic media FM-1 and FM-2, separated with an ultra
thin interface in the yz-plane in the uniform static exter-
nal magnetic field H0, which is parallel to the y-axis. To
calculate the phase shifts and intensities of the SW re-
fracted at the interface we use the Landau-Lifshitz (LL)
equation that describes magnetization vector dynamics
in the effective magnetic field Hjeff:

∂Mj
∂t

= |γ|(Mj ×Hjeff), (S1)

where γ is a gyromagnetic ratio, Mj indicates the ma-
gnetization vector, a damping term is neglected in our
calculations. Hjeff denotes the effective magnetic field of
the j-th ferromagnet and is determined as the functional
derivative of the system total magnetic energy with re-
spect to the magnetization vector: Hjeff = −δw/δMj .

The total magnetic energy of the system is written as
follows:

W =
∫
V

[
A12δ(x) (M1 ·M2) +

2∑
j=1

θ((−1)jx)wj
]
dV,

(S2)
where the first term denotes the surface energy density at
the interface with the interlayer exchange constant A12,
δ(x) corresponds to the Dirac δ-function and θ(x) to the
Heaviside step function, w corresponds to the bulk energy
density of the j-th ferromagnet:

wj =
αj
2

(
∂Mj
∂x

)2

− 1
2
βj (Mj · nj)− (H0 ·Mj). (S3)

Eq. (S3) includes the non-uniform exchange energy den-
sity term for j-th ferromagnet with the αj = Aexj/M

2
0j ,

where Aexj being the j-th ferromagnet exchange stiff-
ness constant and M0j is the saturation magnetization
of the j-th ferromagnet. Anisotropy energy density term
contains βj = Kj/M

2
0j , where Kj is the uniaxial magne-

tic anisotropy constant of j-th ferromagnet and the unit
vector of the easy axis is nj . The last term in Eq. (S3) re-
presents the j-th ferromagnet Zeeman energy density. In
this Letter we relate the parameter A12 to the RKKY in-
teractions between the two ferromagnetic materials thro-
ugh the interface δ [S1–S3].

We treat the magnetization dynamics as the small de-
viations of the magnetization vector Mj from the gro-
und stateMj,y in the form:Mj =Mj,y +mj , where mj

denotes the magnetization vector dynamical component
in the j-th ferromagnet. As the the magnetization vec-
tor is preserved, then the following equality holds m2

j,x+

M2
j,y+m2

j,z = M2
0j . Thus Mj,y =

√
M2

0j −m2
j,x −m2

j,z ≈
M0j −

(
m2
j,x +m2

j,z

)
/2M0j , which in the linear approxi-

mation with respect of |m| results in the magnetization
vector y-component coincidence with the saturation ma-
gnetization value Mj,y ≈M0j .

Solutions of the LL-equations in the homogeneous me-
dia could be found in the form of plane waves, therefore
for FM-1 and FM-2 correspondingly:

m1x + im1z = I1exp(i(k1x− ωt))+
+ I1Rexp(i(k1x− ωt+ ϕR)),

m2x + im2z = IT exp(i(k2x− ωt+ ϕT )),

(S4)

where I1, I1R, IT are the amplitudes of the incident, re-
flected and refracted waves and ϕR, ϕT are the phase
shifts of the reflected and refracted waves, respectively.

For the plane waves (S4) with in-plane kj the disper-
sion relation in the j-th ferromagnetic film of the thick-
ness Lj could be represented by the well-known disper-
sion relation [S4]:

ω2
j (kj) =

(
ω0j + 4π |γ|M0j(1− ψj(kjLj))

)
×

×
(
ω0j + 4π |γ|M0jψj(kjLj)sin2(θ)

)
,

(S5)

where ω0j = |γ|
(
H0 + M0j

(
βj + αjk

2
j

))
, ψ(kjLj) =

1−
(
1− e−kjLj

)
/kjLj , θ is an angle between SW direc-

tion of propagation (kj) and magnetization orientation
(Mj) and for the monochromatic SWs (S4) ω1 = ω2 = ω.
Regarding the limit of the exchange SWs, i.e. kjLj >> 1
and taking into account the Damon-Eshbach geometry
(θ = π/2) we derive wave vector value in the j-th ferro-
magnet:

kj =

(
1
αj

(√
ω2

γ2M2
0j

+ 4π2− H0

M0j
−(2π+βj)

)) 1
2

. (S6)

Implementation of the total energy (S2) to the LL-
equations (S1) in the linear approximation and integra-
tion in the infinitely small neighborhood of a point x = 0
gives the boundary conditions for the magnetization dy-
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namical components [S5, S6]:

(
A12(m2n − ξm1n) + α1

∂m1n

∂x

)∣∣∣∣
x=0

= 0,(
A12(m1n −

m2n

ξ
)− α2

∂m2n

∂x

)∣∣∣∣
x=0

= 0,

(S7)

where ξ = M02/M01 and n = x, z.
To find the transmitted SW phase shift ϕT and in-

tensity T = (IT /I0)2 using the dynamic magnetization
components (S4) and wave vector modulus (S6) we so-
lve the system of equations (S7) for the infinitely thin
interface and derive:

ϕT = arctan
(
A12

ξα2k2 + α1k1/ξ

α1α2k1k2

)
−

{
π,A12 < 0
0, A12 > 0

,

T =
4α2

1k
2
1

(α1α2k1k2/A12)2 + (ξα2k2 + α1k1/ξ)2 .

(S8)

Let us introduce the interlayer exchange constant
A12 as a normalized parameter Aex12 , which is suita-
ble for further comparison of analytical results with
ones from numerical experiment. For that we made an
evaluation of the energies from both models in Gaus-

sian and SI units, i.e.
∫
V

[
A12δ(x)

(
M1 ·M2

)]
dV and

∫
V

[
Aexj

(
∂mj/∂xi

)2]
dV where mj = Mj/M0j is redu-

ced magnetization. To get dimensionless exchange pa-
rameter Aex12 it is convenient to make normalization
with its limit values Aex = A12Co (i.e. for exchange
constant for Co): Aex12 = A12/Aex With the few steps
of easy calculations one can receive equality: Aex12 =

A12

(
∆ ·M2

0

2Aex

)
, where M0 is the Co magnetization satu-

ration and ∆ is the unit cell size along the x direction in
micromagnetic simulations.
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