Supporting Information

MoTe₂ van der Waals Homojunction p-n Diode with Low Resistive Metal Contacts

Sikandar Aftab, Muhammad Farooq Khan, Praveen Gautam, Hwayong Noh, and Jonghwa Eom*

Department of Physics & Astronomy and Graphene Research Institute–Texas Photonics Center International Research Center (GRI–TPC IRC), Sejong University, Seoul 05006, Korea

*Corresponding author: eom@sejong.ac.kr

Figure S1. Raman spectra of n-MoTe₂, p-MoTe₂, and p-MoTe₂/n-MoTe₂ heterostructures.

Figure S2. Schematic illustration of p-MoTe₂ FET when employing same metal contacts under DUV light of average intensity 11 mW/cm² and wavelength 220 nm, inverted to n-MoTe₂ FET.

Figure S3. (a) (i) Band structure of p-MoTe₂ and n-MoTe₂ before and after DUV+N₂ treatment, respectively. Band diagram: (ii) Schottky and (iii) Ohmic contact effect of n-MoTe₂ and p-MoTe₂ with Pd, respectively. I_D - V_D characteristics of (b) n-MoTe₂ and (c) p-MoTe₂ as a function of V_{bg}. (d) Transfer characteristics of p-MoTe₂ before DUV+N₂ treatment of the same device with V_{ds}= 0.5 V. The right axis shows transfer characteristic in log scale. (e) Transfer characteristics of n-MoTe₂ after DUV+N₂ treatment of the same device with V_{ds}= 0.5 V. The right axis shows transfer characteristic in log scale.

Figure S4. Transfer characteristics of n-MoTe₂ after DUV+N₂ treatment of (a) device #1 (b) device #2, and (c) device #3 at V_{ds} = 0.5 V, showing the stability of the devices in an atmospheric environment. Inset shows transfer characteristics in log scale.

Figure S5. Gate-dependent rectifying effect of the MoTe₂ homojunction p-n diode in linear scale.

Electrical rectifying property of MoTe₂ by employing unlike metal contacts:

In this study, we found that the output characteristics with a combination of different metal contacts (as shown in Figure S6(a)) showed a clear rectifying behavior due to the Schottky junction formed upon contact¹ with an on/off ratio of up to 10², and a particularly strong rectification effect for negative gate biases, as shown in Figure S6. This is due to the Schottky barrier height between Al and p-MoTe₂, as Al metal has a low work function value (~4.1 eV)², which does not exceed the valence band maximum or the Fermi level (~4.7-4.99 eV) for p-type MoTe₂ based on theoretical calculations³. Thus, Al forms a Schottky junction with p-MoTe₂, whereas the Pd electrode forms ohmic contacts with p-MoTe₂ owing to its higher work function value (~5.6 eV)⁴. The value of Φ_B according to the Schottky–Mott rule is related to the change in work function value of the metal and the electron affinity of the semiconductor, i.e., $\Phi_B = \Phi_{metal} - \chi_{semi}$. Nevertheless, some semiconductors do not comply with this rule for the formation of metal-induced gap states^{5, 6}, which fill with electrons,

thereby pinning the center of the band gap closer to the Fermi level. This influence is termed as Fermilevel pinning^{4, 7},

Figure S6. (a) Schematic illustration of p-MoTe₂ FET when employing a combination of different metal contacts (Pd and Al). Gate-dependent (b) rectifying effect (c) rectification ratio of the MoTe₂ flake with Pd and Al source and drain electrodes in the log scale.

Figure S7. Photoresponse of MoTe₂ homojunction p-n diode. (a) Photocurrent of the MoTe₂ homojunction p-n diode with green laser light illumination between the ON and OFF states. (b) I_D-V_D characteristics of the device with and without light illumination at zero gate bias ($\lambda = 530$ nm, $P_{Laser} = 50$ mW/cm²). The inset in (b) shows the open circuit voltage (V_{oc}) and short circuit current (I_{sc}) under green laser light.

Two breakdown phenomena in the MoTe₂ homojunction p-n diode:

When a diode operates in the reverse biased region, a very small leakage current flows, and thus, it acts as an open circuit⁸. The reverse leakage current increases suddenly due to the rise in reverse bias voltage, and consequently, dynamic resistance becomes too low. This bias voltage is identified as reverse breakdown voltage⁸. During Zener breakdown, the p and n materials become heavily doped creating a smaller barrier height between them, due to which quantum tunneling can occur. Therefore, electric field existing across the potential barrier is sufficient to overcome the barrier height, causing band-to-band tunneling and current flow at a low reverse bias voltage⁸. Avalanche breakdown causes high electrostatic field interrelated with p and n regions under low p-n diode

doping, and the barrier height is intermediate. Both breakdown phenomena may occur under a reverse bias voltage, as shown in Figure S8. We note that the temperature coefficient of Zener breakdown is negative, whereas the temperature coefficient of avalanche breakdown voltage is positive.

Figure S8. (a) *I-V* characteristics at different temperatures at $V_{bg} = 0$ V. (b) Extended *I-V* characteristics showing Zener breakdown. As the temperature increases, the magnitude of Zener breakdown voltage decreases. (c) Extended *I-V* characteristics showing avalanche breakdown. As the temperature increases, the magnitude of avalanche breakdown voltage increases.

References

- 1. N. J. Townsend, I. Amit, M. F. Craciun and S. Russo, *2D Materials*, 2018, **5**, 025023.
- 2. M. W. Iqbal, M. Z. Iqbal, M. F. Khan, M. A. Shehzad, Y. Seo, J. H. Park, C. Hwang and J. Eom, *Scientific reports*, 2015, **5**, 10699.
- 3. J. Kang, S. Tongay, J. Zhou, J. Li and J. Wu, *Applied Physics Letters*, 2013, **102**, 012111.
- 4. C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park and W. J. Yoo, ACS nano, 2017, **11**, 1588-1596.
- 5. K.-A. Min, J. Park, R. M. Wallace, K. Cho and S. Hong, *2D Materials*, 2016, **4**, 015019.
- 6. S. Picozzi, A. Continenza, G. Satta, S. Massidda and A. Freeman, *Physical Review B*, 2000, **61**, 16736.
- 7. P. Bampoulis, R. Van Bremen, Q. Yao, B. Poelsema, H. J. Zandvliet and K. Sotthewes, *ACS applied materials & interfaces*, 2017.
- 8. B. Van Zeghbroeck, *Colarado University*, 2004.
- 9. P. Horowitz, W. Hill and I. Robinson, *The art of electronics*, Cambridge university press Cambridge, 1980.