Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

An Efficient Synthesis of 16*H*-Dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-ones *via* an Ullmann Reaction

Catalyzed by CuI

Yan Zhang, Jian-Quan Liu, Xiang-Shan Wang*

School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China

xswang1974@yahoo.com

¹ H and ¹³ C NMR spectra for compounds 3a-3u	S2-S43
CIF of the product 3c	S44-S61

¹³C NMR of 16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3a**)

¹³C NMR of 8-chloro-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3b**)

¹³C NMR of 7-chloro-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3c**)

¹H NMR of 8-methyl-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3e**)

¹³C NMR of 8-methyl-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3e**)

¹H NMR of 7-methoxy-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3f**)

-0.000

¹³C NMR of 2-chloro-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3h**)

¹³C NMR of 2,7-dichloro-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3i**)

¹H NMR of 2-chloro-7-methoxy-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3**j)

¹³C NMR of 2-methyl-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3**k)

¹H NMR of 7-chloro-2-methyl-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3**I)

¹³C NMR of 7-chloro-2-methyl-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3**I)

¹H NMR of 12-chloro-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3m**)

-0.000

¹³C NMR of 7-chloro-12-methyl-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3p**)

¹³C NMR of 2-chloro-7-fluoro-16*H*-dibenzo[2,3:6,7][1,4]oxazepino[5,4-*b*]quinazolin-16-one (**3**q)

¹H NMR of 15*H*-benzo[2,3]thieno[2',3':6,7][1,4]oxazepino[5,4-*b*]quinazolin-15-one (**3s**)

CIF of the product 3c

data_3c

_audit_creation_method	SHELXL-97
_chemical_name_systematic	
. ,	
?	
,	
_chemical_name_common	?
_chemical_melting_point	?
_chemical_formula_moiety	?
_chemical_formula_sum	
'C20 H11 Cl N2 O2'	
_chemical_formula_weight	346.76

loop_

_atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033

 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

 'O'
 'O'
 0.0106
 0.0060

 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

 'Cl'
 'Cl'
 0.1484
 0.1585

 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting Triclinic _symmetry_space_group_name_H-M P-1

loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z'

_cell_length_a	8.8729(11)
_cell_length_b	9.3458(12)
_cell_length_c	10.6991(14)
_cell_angle_alpha	68.9710(10)
_cell_angle_beta	88.6400(10)
_cell_angle_gamma	69.7930(10)
_cell_volume	772.05(17)
_cell_formula_units_Z	2
_cell_measurement_temperature	296(2)
_cell_measurement_reflns_used	2307
_cell_measurement_theta_min	2.46
_cell_measurement_theta_max	27.99

_exptl_crystal_description	?
_exptl_crystal_colour	?
_exptl_crystal_size_max	0.25
_exptl_crystal_size_mid	0.20
_exptl_crystal_size_min	0.13
_exptl_crystal_density_meas	0
_exptl_crystal_density_diffrn	1.492
_exptl_crystal_density_method	'not measured'
_exptl_crystal_F_000	356
_exptl_absorpt_coefficient_mu	0.264
_exptl_absorpt_correction_type	none
_exptl_absorpt_correction_T_min	?
_exptl_absorpt_correction_T_max	?
_exptl_absorpt_process_details	?

_exptl_special_details

; ? ;

_diffrn_ambient_temperature	296(2)
_diffrn_radiation_wavelength	0.71073
_diffrn_radiation_type	MoK\a
_diffrn_radiation_source	'fine-focus sealed tube'
_diffrn_radiation_monochromator	graphite

_diffrn_measurement_device_type	'CCD area detector'
_diffrn_measurement_method	'phi and omega scans'
_diffrn_detector_area_resol_mean	?
_diffrn_standards_number	?
_diffrn_standards_interval_count	?
_diffrn_standards_interval_time	?
_diffrn_standards_decay_%	?
_diffrn_reflns_number	4634
_diffrn_reflns_av_R_equivalents	0.0137
_diffrn_reflns_av_sigmaI/netI	0.0251
_diffrn_reflns_limit_h_min	-10
_diffrn_reflns_limit_h_max	10
_diffrn_reflns_limit_k_min	-8
_diffrn_reflns_limit_k_max	11
_diffrn_reflns_limit_l_min	-12
_diffrn_reflns_limit_l_max	11
_diffrn_reflns_theta_min	2.81
_diffrn_reflns_theta_max	25.01
_reflns_number_total	2687
_reflns_number_gt	2290
_reflns_threshold_expression	>2sigma(I)
_computing_data_collection	'Bruker SMART'
_computing_cell_refinement	'Bruker SMART'
_computing_data_reduction	'Bruker SAINT'

_computing_structure_solution

'SHELXS-97 (Sheldrick, 1990)'

_computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics 'Bruker SHELXTL' computing publication material 'Bruker SHELXTL'

_refine_special_details

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2sigma(F^2^>)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

;

_refine_ls_structure_factor_coef	Fsqd
_refine_ls_matrix_type	full
_refine_ls_weighting_scheme	calc
_refine_ls_weighting_details	
'calc w=1/[\s^2^(Fo^2^)+(0.0479	$P^{-2^{+0.1829P}}$ where $P=(Fo^{-2^{+2}Fc^{-2^{-}}})/3'$
_atom_sites_solution_primary	direct
_atom_sites_solution_secondary	difmap
_atom_sites_solution_hydrogens	geom
_refine_ls_hydrogen_treatment	mixed
_refine_ls_extinction_method	none
refine ls extinction coef	?

_refine_ls_number_reflns	2687
_refine_ls_number_parameters	226
_refine_ls_number_restraints	0
_refine_ls_R_factor_all	0.0432
_refine_ls_R_factor_gt	0.0356
_refine_ls_wR_factor_ref	0.0961
_refine_ls_wR_factor_gt	0.0913
_refine_ls_goodness_of_fit_ref	1.048
_refine_ls_restrained_S_all	1.048
_refine_ls_shift/su_max	0.001
refine ls shift/su mean	0.000

loop_

_atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_coupancy _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl -0.00165(5) 1.19380(6) 0.05888(5) 0.05628(17) Uani 1 1 d . . . O1 O 0.82342(15) 0.28858(16) 0.34055(14) 0.0534(3) Uani 1 1 d . . . O2 O 0.51863(14) 0.67680(15) 0.47199(11) 0.0445(3) Uani 1 1 d ... N1 N 0.36048(16) 0.57092(18) 0.17478(14) 0.0401(3) Uani 1 1 d ... N2 N 0.61148(15) 0.53334(17) 0.27849(13) 0.0352(3) Uani 1 1 d . . . C1 C 0.44802(18) 0.6193(2) 0.23334(16) 0.0350(4) Uani 1 1 d ... C2 C 0.68697(19) 0.3707(2) 0.28527(16) 0.0386(4) Uani 1 1 d . . . C3 C 0.5893(2) 0.3154(2) 0.21867(16) 0.0386(4) Uani 1 1 d ... C4 C 0.6538(2) 0.1605(2) 0.21080(19) 0.0476(4) Uani 1 1 d . . . H4A H 0.7567 0.0891 0.2528 0.057 Uiso 1 1 calc R . . C5 C 0.5639(3) 0.1140(2) 0.1403(2) 0.0536(5) Uani 1 1 d . . . H5A H 0.6059 0.0106 0.1351 0.064 Uiso 1 1 calc R . . C6 C 0.4112(3) 0.2210(3) 0.0771(2) 0.0533(5) Uani 1 1 d ... H6A H 0.3532 0.1902 0.0267 0.064 Uiso 1 1 calc R . . C7 C 0.3439(2) 0.3719(2) 0.08771(19) 0.0489(5) Uani 1 1 d ... H7A H 0.2398 0.4412 0.0470 0.059 Uiso 1 1 calc R . . C8 C 0.4329(2) 0.4209(2) 0.16028(16) 0.0387(4) Uani 1 1 d . . . C9 C 0.36374(19) 0.7741(2) 0.25556(16) 0.0364(4) Uani 1 1 d ... C10 C 0.23864(19) 0.8980(2) 0.15947(17) 0.0386(4) Uani 1 1 d ... H10A H 0.2174 0.8879 0.0790 0.046 Uiso 1 1 calc R ... C11 C 0.14667(19) 1.0354(2) 0.18422(18) 0.0420(4) Uani 1 1 d ... C12 C 0.1715(2) 1.0523(2) 0.30441(19) 0.0484(4) Uani 1 1 d ... H12A H 0.1053 1.1438 0.3210 0.058 Uiso 1 1 calc R ... C13 C 0.2963(2) 0.9310(2) 0.39912(18) 0.0464(4) Uani 1 1 d . . . H13A H 0.3154 0.9407 0.4802 0.056 Uiso 1 1 calc R . . C14 C 0.3926(2) 0.7954(2) 0.37394(16) 0.0391(4) Uani 1 1 d . . .

C15 C 0.6676(2) 0.6666(2) 0.42273(17) 0.0416(4) Uani 1 1 d . . . C16 C 0.7677(3) 0.7239(2) 0.4719(2) 0.0554(5) Uani 1 1 d . . . H16A H 0.7384 0.7641 0.5403 0.066 Uiso 1 1 calc R . . C17 C 0.9110(3) 0.7213(3) 0.4190(2) 0.0640(6) Uani 1 1 d . . . H17A H 0.9799 0.7577 0.4530 0.077 Uiso 1 1 calc R . . C18 C 0.9528(2) 0.6649(3) 0.3160(2) 0.0596(6) Uani 1 1 d . . . H18A H 1.0480 0.6670 0.2784 0.071 Uiso 1 1 calc R . . C19 C 0.8537(2) 0.6051(2) 0.26800(19) 0.0480(4) Uani 1 1 d . . . H19A H 0.8830 0.5656 0.1992 0.058 Uiso 1 1 calc R . . C20 C 0.71050(19) 0.6043(2) 0.32281(16) 0.0383(4) Uani 1 1 d . . .

loop_

_atom_site_aniso_label

_atom_site_aniso_U_11

_atom_site_aniso_U_22

- atom site aniso U_33
- _atom_site_aniso_U_23
- _atom_site_aniso_U_13

_atom_site_aniso_U_12

Cl1 0.0452(3) 0.0508(3) 0.0582(3) -0.0149(2) -0.0056(2) -0.0052(2) O1 0.0429(7) 0.0504(8) 0.0629(8) -0.0268(7) -0.0053(6) -0.0055(6) O2 0.0542(7) 0.0414(7) 0.0329(6) -0.0129(5) 0.0004(5) -0.0119(6) N1 0.0387(7) 0.0420(8) 0.0440(8) -0.0190(7) 0.0029(6) -0.0164(6) N2 0.0352(7) 0.0374(8) 0.0359(7) -0.0155(6) 0.0038(5) -0.0146(6) C1 0.0360(8) 0.0373(9) 0.0328(8) -0.0128(7) 0.0036(6) -0.0150(7) C2 0.0393(9) 0.0397(10) 0.0368(9) -0.0159(8) 0.0069(7) -0.0128(7) C3 0.0453(9) 0.0392(9) 0.0356(9) -0.0155(8) 0.0104(7) -0.0192(8) C4 0.0563(11) 0.0420(10) 0.0482(10) -0.0200(9) 0.0132(8) -0.0192(9) $C5\ 0.0742(13)\ 0.0443(11)\ 0.0579(12)\ -0.0279(10)\ 0.0234(10)\ -0.0316(10)$ C6 0.0693(13) 0.0584(13) 0.0534(11) -0.0292(10) 0.0138(10) -0.0398(11) C7 0.0521(10) 0.0531(12) 0.0523(11) -0.0236(9) 0.0063(8) -0.0275(9) C8 0.0451(9) 0.0412(10) 0.0366(9) -0.0168(8) 0.0089(7) -0.0215(8) C9 0.0363(8) 0.0389(9) 0.0382(9) -0.0158(7) 0.0066(7) -0.0172(7) C10 0.0373(8) 0.0433(10) 0.0390(9) -0.0167(8) 0.0038(7) -0.0175(7) C11 0.0347(8) 0.0413(10) 0.0466(10) -0.0132(8) 0.0048(7) -0.0132(7) C12 0.0473(10) 0.0444(11) 0.0534(11) -0.0242(9) 0.0094(8) -0.0103(8) C13 0.0555(10) 0.0463(11) 0.0397(9) -0.0215(8) 0.0076(8) -0.0157(9) C14 0.0440(9) 0.0373(9) 0.0351(9) -0.0122(7) 0.0048(7) -0.0151(7) C15 0.0458(9) 0.0339(9) 0.0393(9) -0.0092(8) -0.0073(7) -0.0116(7) C16 0.0666(13) 0.0412(11) 0.0545(12) -0.0165(9) -0.0194(10) -0.0146(9) C17 0.0636(13) 0.0498(12) 0.0752(15) -0.0116(11) -0.0260(11) -0.0264(10) C18 0.0445(10) 0.0569(13) 0.0683(13) -0.0055(11) -0.0082(9) -0.0254(9) C19 0.0435(9) 0.0493(11) 0.0474(10) -0.0104(9) -0.0001(8) -0.0198(8) C20 0.0393(8) 0.0369(9) 0.0376(9) -0.0102(7) -0.0038(7) -0.0157(7)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

;

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 Cl1 1.7422(17).? O1 C2 1.213(2) . ? O2 C14 1.395(2) . ? O2 C15 1.396(2) . ? N1 C1 1.292(2) . ? N1 C8 1.390(2) . ? N2 C1 1.390(2) . ? N2 C2 1.408(2) . ? N2 C20 1.444(2) . ? C1 C9 1.483(2) . ? C2 C3 1.459(2) . ? C3 C4 1.394(2) . ? C3 C8 1.394(2) . ? C4 C5 1.377(3) . ? C4 H4A 0.9300 . ? C5 C6 1.384(3) . ? C5 H5A 0.9300 . ?

C6 C7 1.374(3) . ? C6 H6A 0.9300 . ? C7 C8 1.404(2) . ? C7 H7A 0.9300 . ? C9 C14 1.393(2) . ? C9 C10 1.393(2) . ? C10 C11 1.376(2).? C10 H10A 0.9300 . ? C11 C12 1.382(3) . ? C12 C13 1.378(3) . ? C12 H12A 0.9300 . ? C13 C14 1.376(2).? C13 H13A 0.9300 . ? C15 C20 1.379(2) . ? C15 C16 1.381(2) . ? C16 C17 1.376(3) . ? C16 H16A 0.9300 . ? C17 C18 1.375(3) . ? C17 H17A 0.9300 . ? C18 C19 1.384(3) . ? C18 H18A 0.9300 . ? C19 C20 1.388(2) . ? C19 H19A 0.9300 . ?

loop_

_geom_angle_atom_site_label_1

geom angle atom site label 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom angle publ flag C14 O2 C15 110.47(12) . . ? C1 N1 C8 117.94(14) . . ? C1 N2 C2 120.92(13) . . ? C1 N2 C20 122.01(13) . . ? C2 N2 C20 117.06(13) . . ? N1 C1 N2 124.04(15) . . ? N1 C1 C9 116.35(14) . . ? N2 C1 C9 119.58(14) . . ? O1 C2 N2 120.86(15) . . ? O1 C2 C3 124.66(16) . . ? N2 C2 C3 114.47(14) . . ? C4 C3 C8 120.71(16) . . ? C4 C3 C2 120.13(16) . . ? C8 C3 C2 119.14(15) . . ? C5 C4 C3 119.49(18) . . ? C5 C4 H4A 120.3 . . ? C3 C4 H4A 120.3 . . ? C4 C5 C6 120.08(18) . . ? C4 C5 H5A 120.0 . . ? C6 C5 H5A 120.0 . . ?

C7 C6 C5 121.09(18) . . ? C7 C6 H6A 119.5 . . ? C5 C6 H6A 119.5 . . ? C6 C7 C8 119.66(18) . . ? C6 C7 H7A 120.2 . . ? C8 C7 H7A 120.2 . . ? N1 C8 C3 122.20(15) . . ? N1 C8 C7 118.91(15) . . ? C3 C8 C7 118.87(16) . . ? C14 C9 C10 118.18(15) . . ? C14 C9 C1 123.08(15) . . ? C10 C9 C1 118.42(14) . . ? C11 C10 C9 119.71(15) . . ? C11 C10 H10A 120.1 . . ? C9 C10 H10A 120.1 . . ? C10 C11 C12 121.74(16) . . ? C10 C11 Cl1 118.92(13) . . ? C12 C11 Cl1 119.32(14) . . ? C13 C12 C11 118.70(16) . . ? C13 C12 H12A 120.6 . . ? C11 C12 H12A 120.6 . . ? C14 C13 C12 120.17(16) . . ? C14 C13 H13A 119.9 . . ? C12 C13 H13A 119.9 . . ? C13 C14 C9 121.40(16) . . ? C13 C14 O2 118.16(15) . . ?

C9 C14 O2 120.43(15) . . ? C20 C15 C16 120.87(18) . . ? C20 C15 O2 119.67(14) . . ? C16 C15 O2 119.42(17) . . ? C17 C16 C15 119.6(2) . . ? C17 C16 H16A 120.2 . . ? C15 C16 H16A 120.2 . . ? C18 C17 C16 120.22(18) . . ? C18 C17 H17A 119.9 . . ? C16 C17 H17A 119.9 . . ? C17 C18 C19 120.2(2) . . ? C17 C18 H18A 119.9 . . ? C19 C18 H18A 119.9 . . ? C18 C19 C20 119.83(19) . . ? C18 C19 H19A 120.1 . . ? C20 C19 H19A 120.1 . . ? C15 C20 C19 119.20(16) . . ? C15 C20 N2 120.79(15) . . ? C19 C20 N2 119.97(16) . . ?

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion

_geom_torsion_site_symmetry_1 geom torsion site symmetry 2 geom torsion site symmetry 3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag C8 N1 C1 N2 2.3(2) ? C8 N1 C1 C9 -175.85(14)? C2 N2 C1 N1 -11.7(2)? C20 N2 C1 N1 169.51(15)? C2 N2 C1 C9 166.40(14)? C20 N2 C1 C9 -12.4(2)? C1 N2 C2 O1 -170.41(15)? C20 N2 C2 O1 8.4(2)? C1 N2 C2 C3 11.0(2)? C20 N2 C2 C3 -170.20(14)? O1 C2 C3 C4 -2.6(3) ? N2 C2 C3 C4 175.98(15)? O1 C2 C3 C8 179.12(16)? N2 C2 C3 C8 -2.3(2)? C8 C3 C4 C5 2.4(3) ? C2 C3 C4 C5 -175.90(16)? $C3 C4 C5 C6 0.4(3) \dots ?$ C4 C5 C6 C7 -2.6(3) ? C5 C6 C7 C8 1.9(3) ? C1 N1 C8 C3 6.8(2) ? C1 N1 C8 C7 -175.07(15)?

C4 C3 C8 N1 175.09(15)? C2 C3 C8 N1 -6.6(2) ? C4 C3 C8 C7 -3.0(2) ? C2 C3 C8 C7 175.31(15)? C6 C7 C8 N1 -177.31(17)? C6 C7 C8 C3 0.8(3) . . . ? N1 C1 C9 C14 138.82(17)? N2 C1 C9 C14 - 39.5(2) ? N1 C1 C9 C10 -34.6(2)? N2 C1 C9 C10 147.16(15)? C14 C9 C10 C11 -0.8(2) ? C1 C9 C10 C11 172.90(15)? C9 C10 C11 C12 -2.0(3) ? C9 C10 C11 Cl1 176.44(12)? C10 C11 C12 C13 2.7(3)? Cl1 Cl1 Cl2 Cl3 -175.74(14) ? C11 C12 C13 C14 -0.5(3) ? C12 C13 C14 C9 -2.3(3) ? C12 C13 C14 O2 179.20(16)? C10 C9 C14 C13 3.0(3)? C1 C9 C14 C13 -170.42(16)? C10 C9 C14 O2 -178.57(14)? C1 C9 C14 O2 8.0(2) ? C15 O2 C14 C13 -116.13(17)? C15 O2 C14 C9 65.37(19) . . . ? C14 O2 C15 C20 -68.79(19)?

C14 O2 C15 C16 109.15(17)? C20 C15 C16 C17 1.0(3) ? O2 C15 C16 C17 -176.90(17)? C15 C16 C17 C18 1.3(3) . . . ? C16 C17 C18 C19 -2.3(3)? C17 C18 C19 C20 0.9(3)? C16 C15 C20 C19 -2.3(3)? O2 C15 C20 C19 175.57(15)? C16 C15 C20 N2 175.42(16)? O2 C15 C20 N2 -6.7(2)? C18 C19 C20 C15 1.4(3)? C18 C19 C20 N2 -176.42(16)? C1 N2 C20 C15 55.0(2) ? C2 N2 C20 C15 -123.82(17)? C1 N2 C20 C19 -127.28(17)? C2 N2 C20 C19 53.9(2)?

loop_

_geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site symmetry A

C10 H10A Cl1 0.93 2.89 3.6787(17) 142.9 2_575 C12 H12A O1 0.93 2.44 3.226(2) 141.8 1_465

_diffrn_measured_fraction_theta_max	0.984
_diffrn_reflns_theta_full	25.01
_diffrn_measured_fraction_theta_full	0.984
_refine_diff_density_max 0.157	
_refine_diff_density_min -0.205	
_refine_diff_density_rms 0.036	