Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Nucleophilic Trifluoromethylthiolation of Bromoalkynones with

AgSCF₃: C(sp)-SCF₃ Bond Formation towards Ynonyl

Trifluoromethyl Sulfides

Huanfeng Jiang,*a Rui Zhu, A Chuanle Zhu,*a,b Fulin Chen, Wanqing Wu

 ^a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 51640, P. R. China
^b State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China
E-mail: cechlzhu@scut.edu.cn, jianghf@scut.edu.cn; Fax and Tel.: (+86) 20-87112906

Table of Contents

A. General Information	1
B. General Procedure for the Nucleophilic Trifluoromethylthiolation of Bromoall	kynones
with AgSCF ₃	2
C. Analysis Data for the Products	2
D. Procedure for the Gram-Scale Synthesis of 4a and transformations of 4a	10
E. NMR Spectra of New Compounds	12
F. Complementary Explanations	46

A. General Information

Melting points were measured using a melting point instrument and are uncorrected. Chemical shifts were reported in ppm from the solvent resonance as the internal standard (CDCl₃ $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.00$ ppm; DMSO- $d_6 \delta_{\rm H} = 2.50$ ppm, $\delta_{\rm C} = 39.51$ ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants were reported in Hertz (Hz). IR spectra were obtained with an infrared spectrometer on either potassium bromide pellets or liquid films between two potassium bromide pellets. GC-MS data were obtained using electron ionization. HRMS was carried out on a high-resolution mass spectrometer. TLC was performed using commercially available 100–400 mesh silica gel plates (GF₂₅₄).

Materials. Tetrahydrofuran (THF) and toluene were distilled from sodium/benzophenone; 1,2dichloroethane (DCE) was distilled from calcium hydride; acetonitrile (CH₃CN) was distilled from phosphorus pentoxide. Other commercially available reagents were purchased and used without further purification. Analytical thin-layer chromatography was performed on 0.20 mm silica gel plates (GF₂₅₄) using UV light as a visualizing agent. Flash column chromatography was carried out using silica gel (200–300 mesh) with the indicated solvent system. All reactions were conducted in oven-dried Schlenk tubes. All the reaction temperatures reported are oil bath temperatures. **B.** General Procedure for the Nucleophilic Trifluoromethylthiolation of Bromoalkynones with AgSCF₃

A 25 mL test tube placed with a magnetic stirring bar, bromoalkynones 2 (0.1 mmol), LiOH (0.1 mmol), AgSCF₃ (0.2 mmol), and toluene (2 mL) was vigorously stirred at 100 °C for 12 h in an oil bath. Then the resulting solution was cooled to room temperature, added water (20 mL), extracted with EtOAc (3 \times 20 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the pure product **4**.

C. Analysis Data for the Products

1-Phenyl-3-((trifluoromethyl)thio)prop-2-yn-1-one (4a)

18.4 mg, 80% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 1:2 v/v): $R_f = 0.40$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05–8.02 (m, 1H), 7.77–7.73 (m, 1H), 7.62–7.58 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.6, 135.1, 135.1, 129.1, 129.0, 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 100.6, 77.2; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.1; IR (KBr): 2930, 1688, 1452, 1268, 750 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₀H₅OSF₃+Na, 252.9905; found, 252.9907.

1-(p-Tolyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4b)

19.8 mg, 81% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.65$; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 145.9, 133.3, 129.5, 129.4, 127.3 (q, ¹ $J_{F-C} = 312.0$ Hz), 102.3, 75.2 (q, ³ $J_{F-C} = 3.9$ Hz), 21.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -41.9; IR (KBr): 2926, 2860, 2156,

S2

1604, 1508, 1380, 820 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₇OSF₃+H, 245.0242; found, 245.0420.

3

1-(*m*-Tolyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4c)

13.9 mg, 57% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.70$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.85 (d, *J* = 7.2 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.8, 138.8, 135.8, 135.2, 129.3, 129.1, 127.5 (q, ¹*J*_{*F*-C} = 312.0 Hz), 126.3, 100.6, 77.2, 20.7; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.1; IR (KBr): 2925, 2858, 1718, 1648, 1452, 728 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₁H₇OSF₃+Na, 267.0062; found, 267.0053.

1-(o-Tolyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4d)

18.5 mg, 76% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 50:1 v/v): $R_f = 0.80$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.06 (d, *J* = 7.6 Hz, 1H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 7.2 Hz, 1H), 2.55 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 176.2, 139.8, 133.8, 133.7, 132.7, 132.3, 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 126.4, 125.9, 101.8, 75.8, 21.1; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.2; IR (KBr): 2926, 2860, 1660, 1457, 1379, 740 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₇OSF₃+H, 245.0242; found, 245.0240.

1-(4-tert-Butylphenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4e)

16.6 mg, 58% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.81$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.96 (d, J = 8.4 Hz, 2H), 7.62 (d, J = 8.4 Hz, 2H), 1.30 (s, 9H); ¹³C NMR (400 MHz, DMSO-*d*₆) δ 174.2, 158.6, 132.8, 128.9, 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 126.0, 100.7, 76.6, 35.1, 30.6; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.2; IR (KBr): 2931, 12862, 1726,

1645, 1463, 1395, 842 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₄H₁₃OSF₃+Na, 309.0531; found, 309.0536.

1-(4-Methoxyphenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4f)

20.5 mg, 79% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.58$; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.8 Hz, 2H), 6.98 (d, J = 8.8 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.1, 165.1, 132.0, 129.2, 127.6 (q, ¹ $J_{F-C} = 312.0$ Hz), 114.3, 102.3, 74.9, 55.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -42.0; IR (KBr): 2976, 2866, 2156, 1597, 1505, 802 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₁H₇O₂SF₃+Na, 283.0011; found, 283.0006.

1-(3-Methoxyphenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4g)

17.7 mg, 68% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.72$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.66–7.63 (m, 1H), 7.56–7.49 (m, 2H), 7.35–7.32 (m, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.4, 159.6, 136.5, 130.4, 127.5 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 121.7, 121.4, 112.8, 100.5, 77.4, 50.4; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.2; IR (KBr): 2929, 2855, 1676, 1589, 1462, 788, 688 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₇O₂SF₃+H, 261.0192; found, 261.0191.

1-(2-Methoxyphenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4h)

16.4 mg, 63% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.63$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.66–7.64 (m, 1H), 7.54 (t, *J* = 8.0 Hz, 1H), 7.51–7.50 (m, 1H), 7.35–7.33 (m, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.4, 159.6, 136.5, 130.4, 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 121.7, 121.4, 100.5, 77.4 (q, ³*J*_{*F*-*C*} = 4.2 Hz), 55.4; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.1; IR (KBr): 2924, 2857, 1721, 1587, 1459, 1373, 775 cm⁻¹; HRMS (ESI,

m/z): [M+H]⁺ Calcd. for C₁₁H₇OSF₃+H, 261.0192; found, 261.0193.

1-(4-Fluorophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4i)

17.3 mg, 70% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.80$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 (dd, J = 8.5 Hz, J = 5.5 Hz, 2H), 7.47 (t, J = 8.7 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.2, 166.1 (d, ¹ $J_{F-C} = 253.0$ Hz), 132.1 (d, ² $J_{F-C} = 10.0$ Hz), 132.0 (d, ³ $J_{F-C} = 2.0$ Hz), 127.4 (q, ¹ $J_{F-C} = 312.0$ Hz), 116.5 (d, ² $J_{F-C} = 22.0$ Hz), 100.2, 77.8; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.0, -102.4 - -102.5 (m, 1F); IR (KBr): 1687, 1598, 1417, 844 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄OSF₄+H, 248.9992; found, 248.9993.

1-(3-Fluorophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4j)

15.6 mg, 63% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.78$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.91–7.89 (m, 1H), 7.82–7.79 (t, *J* = 8.0 Hz, 1H), 7.71–7.60 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.4, 162.2 (d, ¹*J*_{*F*-*C*} = 245.0 Hz), 137.3 (d, ³*J*_{*F*-*C*} = 6.0 Hz), 131.5 (d, ³*J*_{*F*-*C*} = 8.0 Hz), 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 125.3 (d, ⁴*J*_{*F*-*C*} = 2.0 Hz), 122.1 (d, ²*J*_{*F*-*C*} = 22.0 Hz), 115.2 (d, ²*J*_{*F*-*C*} = 23.0 Hz), 100.1, 78.5 (q, ³*J*_{*F*-*C*} = 4.0 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.1, –111.5 – –111.5 (m, 1F); IR (KBr): 2925, 2858, 1657, 1589, 1445, 749 675 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₀H₄OSF₄+Na, 270.9811; found, 270.9808.

1-(2-Fluorophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4k)

12.8 mg, 52% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.81$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.99 (td, J = 7.6 Hz, J = 1.6 Hz, 1H), 7.82–7.76 (m, 1H), 7.44–7.39 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.8, 161.2 (d, ¹*J*_{*F*-*C*} = 259.0 Hz), 137.2 (d, ³*J*_{*F*-*C*} = 10.0 Hz), 131.4, 127.3 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 125.1 (d, ⁴*J*_{*F*-*C*} = 3.0 Hz), 123.5 (d, ³*J*_{*F*-*C*} = 8.0

Hz), 117.3 (d, ${}^{2}J_{F-C} = 21.0$ Hz), 101.8, 77.2; 19 F NMR (376 MHz, DMSO- d_{6}) δ -42.1, -112.5 - -112.6 (m, 1F); IR (KBr): 1656, 1612, 1459, 759 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₀H₄OSF₄+Na, 270.9811; found, 270.9782.

6

1-(4-Chlorophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4l)

 \sim

20.5 mg, 78% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.82$; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 141.4, 134.1, 130.6, 129.3, 127.3 (q, ¹ $J_{F-C} = 312.0$ Hz), 101.9, 77.2; ¹⁹F NMR (376 MHz, DMSO- d_6) δ –42.0; IR (KBr): 2919, 1710, 1523, 1410, 834 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄ClOSF₃+H, 264.9696; found, 264.9691.

1-(3-Chlorophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4m)

16.0 mg, 61% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.88$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.00–7.97 (m, 2H), 7.82–7.79 (m, 1H), 7.63 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.3, 136.8, 134.6, 134.0, 131.1, 128.4, 127.5, 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 100.1, 78.62 (q, ³*J*_{*F*-*C*} = 4.0 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.1; IR (KBr): 1660, 1572, 1421, 773, 692 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄ClOSF₃+H, 264.9696; found, 264.9692.

1-(2-Chlorophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4n)

13.2 mg, 50% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.72$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.03 (d, *J* = 7.6 Hz, 1H), 7.71–7.62 (m, 2H), 7.59–7.55 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.4, 135.0, 133.4, 132.8, 132.1, 131.6, 127.8, 127.3 (q, ¹*J*_{*F*-*C*} = 313.0 Hz), 101.5, 78.5 (q, ³*J*_{*F*-*C*} = 4.0 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –41.7; IR (KBr):

2925, 2857, 1703, 1588, 1449, 750 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄ClOSF₃+H, 264.9696; found, 264.9697.

1-(4-Bromophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (40)

22.1 mg, 72% yield; viscous liquid; TLC (petroleum ether): $R_f = 0.60$; ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 (d, J = 7.6 Hz, 2H), 7.82 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 173.7, 134.2, 132.3, 130.8, 129.5, 127.3 (q, ¹ $J_{F-C} = 312.0$ Hz), 100.2, 78.1 (q, ³ $J_{F-C} = 4.0$ Hz); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -42.0; IR (KBr): 2926, 1686, 1580, 1400, 830 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄BrOSF₃+H, 308.9191; found, 308.9191.

1-(3-bromophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4p)

18.4 mg, 60% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 20:1 v/v): $R_f = 0.80$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.16 (t, *J* = 1.8 Hz, 1H), 8.05–8.02 (m, 1H), 7.98–7.95 (m, 1H), 7.58 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 137.6, 137.0, 131.4, 131.3, 127.9, 127.4 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 122.4, 100.0, 78.8 cm⁻¹; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.0; IR (KBr): 2185, 1658, 1573, 1420, 760, 695 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄BrOSF₃+H, 308.9191; found, 308.9191.

1-(2-bromophenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4q)

13.2 mg, 43% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.63$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.01 (dd, J = 7.2 Hz, J = 2.2 Hz, 1H), 7.83–7.81 (m, 1H), 7.63–7.58 (m, 2H).; ¹³C NMR (100 MHz, DMSO-*d*₆) δ 172.2, 135.1, 134.9, 134.8, 133.0, 128.2, 127.3 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 20.0, 101.1, 78.7; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –41.7; IR (KBr): 2928, 1679, 1486, 730 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₀H₄BrOSF₃+H, 308.9191;

found, 308.9191.

1-(4-(Trifluoromethyl)phenyl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4r)

16.6 mg, 56% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.80$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.21 (d, *J* = 7.8 Hz, 2H), 7.96 (d, *J* = 7.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.7, 138.1, 134.0 (q, ²*J*_{*F*-*C*} = 32.0 Hz), 129.7, 127.3 (q, ¹*J*_{*F*-*C*} = 313.0 Hz), 126.1 (q, ³*J*_{*F*-*C*} = 3.0 Hz), 123.5 (q, ¹*J*_{*F*-*C*} = 271.0 Hz), 100.3, 79.1 (q, ³*J*_{*F*-*C*} = 4.0 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.1, -62.0; IR (KBr): 2924, 1652, 1500, 750 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₄F₆OS+H, 298.9887; found, 298.9891.

1-(Naphthalen-2-yl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4s)

16.0 mg, 57% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 14:1 v/v): $R_f = 0.73$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.70 (d, *J* = 4.8 Hz, 1H), 8.10–7.99 (m, 4H), 7.72–7.64 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.5, 135.8, 132.7, 132.5, 131.9, 129.7, 129.6, 128.9, 127.9, 127.5 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 127.4, 122.8, 100.7, 77.1; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.0; IR (KBr): 2926, 2154, 1735, 1645, 1511, 1253, 1097 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₄H₇OSF₃+Na, 303.0062; found, 303.0060.

1-(Naphthalen-1-yl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4t)

9.5 mg, 34% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.73$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.03 (d, *J* = 8.6 Hz, 1H), 8.47 (d, *J* = 7.1 Hz, 1H), 8.32 (d, *J* = 8.1 Hz, 1H), 8.08 (d, *J* = 8.0 Hz, 1H), 7.75–7.63 (m, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 176.1, 136.0, 135.0, 133.4, 130.5, 129.7, 129.3, 129.0, 127.5 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 127.0, 124.9, 124.8, 101.6, 75.6; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ –42.0; IR (KBr): 2913, 2154, 1730, 1642, 1510,

1253, 1066 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₄H₇OSF₃+H, 281.0242; found, 281.0238.

1-(Thiophen-3-yl)-3-((trifluoromethyl)thio)prop-2-yn-1-one (4u)

18.6 mg, 79% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.63$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.62 (dd, J = 2.8, J = 1.3 Hz, 1H), 7.74 (dd, J = 5.1, J = 2.9 Hz, 1H), 7.55 (dd, J = 5.1, J = 1.3 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.1, 140.8, 137.6, 129.0, 127.4 (q, ¹*J*_{*F*-*C*} = 312.3 Hz), 125.8, 100.5, 75.2 (q, ³*J*_{*F*-*C*} = 4.0 Hz); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.1; IR (KBr): 2926, 2154, 1735, 1645, 1156, 1097 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₈H₃OS₂F₃+Na, 258.9470; found, 258.9467.

1-Cyclohexyl-3-((trifluoromethyl)thio)prop-2-yn-1-one (4v)

5.9 mg, 25% yield; viscous liquid; TLC (petroleum ether/ethyl acetate, 15:1 v/v): $R_f = 0.72$; ¹H NMR (400 MHz, DMSO-*d*₆) δ 1.89 (d, *J* = 10.6 Hz, 2H), 1.68 (dd, *J* = 8.6, *J* = 3.6 Hz, 4H), 1.39–1.24 (m, 6H), 0.84 (d, *J* = 7.3 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 188.4, 127.8 (q, ¹*J*_{*F*-*C*} = 312.0 Hz), 101.7, 75.8, 50.9, 27.8, 25.7, 25.1; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -42.5; IR (KBr): 2932, 2853, 2193, 1710, 1460 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₀H₁₁OSF₃+Na, 259.0379; found, 259.0375.

D. Procedure for the Gram-Scale Synthesis of 4a and transformations of 4a

A 250 mL round bottom flask placed with a magnetic stirring bar, bromoalkynones **2a** (5 mmol), LiOH (5 mmol), AgSCF₃ (10 mmol), and toluene (100 mL) was vigorously stirred at 100 °C for 12 h in an oil bath. Then the resulting solution was cooled to room temperature, added water (100 mL), extracted with EtOAc (3 × 100 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the pure product **4a** (63%, 0.724 g).

To a 25 mL round bottom flask placed with a magnetic stirring bar was added Et₃N (0.9 mmol), (*Z*)-4-bromo-*N*-hydroxybenzimidoyl chloride (0.6 mmol), and Et₂O (2 mL), the resulting mixture was stirred at 0 °C for 30 min, then **4a** (0.3 mmol) in Et₂O (1 mL) was added. The reaction mixture was left at room temperature for about 12 h. After completion of the reaction, the resulting solution added water (20 mL), extracted with EtOAc (3×20 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the pure product **5a**.

(3-(4-Bromophenyl)-5-((trifluoromethyl)thio)isoxazol-4-yl)(phenyl)methanone (5a)

80.5 mg, 63% yield; white solid, mp: 123–124 °C; TLC (petroleum ether/ethyl acetate, 50:1 v/v): $R_f = 0.31$; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 7.5 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.40–7.36 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 187.6, 161.4, 158.2, 136.0, 134.5, 132.1, 129.8, 129.6, 128.8, 127.1 (q, ¹ $J_{F-C} = 312.0$ Hz), 125.8, 125.5, 123.9; ¹⁹F NMR (376 MHz, CDCl₃) δ –38.6; IR (KBr): 2922, 2854, 1731, 1663, 1592, 1456, 830, 753, 693 cm⁻¹; HRMS (ESI, m/z): [M+Na]⁺ Calcd. for C₁₇H₉BrF₃NO₂S+Na, 449.9382; found, 449.9375.

¹H NMR (400 MHz, CDCl₃) spectrum for 4b

¹³C NMR (100 MHz, CDCl₃) spectrum for 4b

¹⁹F NMR (100 MHz, CDCl₃) spectrum for 4b

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

14

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4c

¹³C NMR (100 MHz, DMSO-d₆) spectrum for 4d

¹⁹F NMR (400 MHz, DMSO-*d*₆) spectrum for 4d

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4e

¹H NMR (400 MHz, CDCl₃) spectrum for 4f

¹³C NMR (100 MHz, CDCl₃) spectrum for 4f

¹⁹F NMR (376 MHz, CDCl₃) spectrum for 4f

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4g

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4g

¹⁹F NMR (100 MHz, DMSO-*d*₆) spectrum for 4g

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4h

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4h

¹⁹F NMR (376 MHz, DMSO-d₆) spectrum for 4h

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4i

25

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4j

¹⁹F NMR (400 MHz, DMSO-*d*₆) spectrum for 4j

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4k

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4k

¹⁹F NMR (100 MHz, DMSO-*d*₆) spectrum for 4k

¹H NMR (400 MHz, CDCl₃) spectrum for 4l

¹⁹F NMR (100 MHz, CDCl₃) spectrum for 4l

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4m

¹³C NMR (100 MHz, DMSO-d₆) spectrum for 4m

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4n

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4n

¹⁹F NMR (100 MHz, DMSO-*d*₆) spectrum for 4n

¹³C NMR (100 MHz, DMSO-d₆) spectrum for 40

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 40

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum for 40

S34

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4p

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum for 4p

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

35

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4q

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4q

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum for 4q

¹³C NMR (100 MHz, DMSO-d₆) spectrum for 4r

¹⁹F NMR (100 MHz, DMSO-*d*₆) spectrum for 4r

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4s

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum for 4s

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4t

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 4t

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum for 4t

¹H NMR (400 MHz, DMSO-*d*₆) spectrum for 4u

43

S43

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum for 5v

¹⁹F NMR (376 MHz, DMSO-*d*₆) spectrum for 4v

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 f1(ppm) -120 -170 -180 -100 -110 -130 -140 -150 -160

¹H NMR (400 MHz, CDCl₃) spectrum for 5a

¹³C NMR (100 MHz, CDCl₃) spectrum for 5a

F. Complementary Explanations

In our manuscript, in the reaction optimization progress, we said "The desired product **4a** was not detected by GC-MS or ¹⁹F-NMR, meanwhile 90% of the bromoalkynone **2a** was recovered. These results indicated that AgSCF₃ was a poor nucleophilic reagent and the energy barrier for this nucleophilic trifluoromethylthiolation reaction was very high, thus the nucleophilic addition process of AgSCF₃ to bromoalkynone **2a** did not happen at room temperature. In this sense, increasing the reaction temperature became the logical follow-up consideration to overcome the high energy barrier of this reaction. To our delight, a temperature of 80 °C gave the desired product **4a** in 43% isolated yield." While there is no yield under 50 degree, but 43% yield under 80 degree.

As the requested by the reviewers and the editor, the ¹⁹F-NMR analysis spectra of the crude mixture at 50 degree and at 80 degree were showed below to support our results. The ¹⁹F-NMR

signal of **4a** is at δ = -42.09 ppm. The ¹⁹F-NMR signal of internal standard (PhCF₃) is at δ = -62.89 ppm.

For the ¹⁹F-NMR analysis (376 MHz, CDCl₃) of the crude mixture at 50 degree

For the ¹⁹F-NMR analysis (376 MHz, CDCl₃) of the crude mixture at 80 degree

In our manuscript, we said "Interestingly, with chloroakynone 1a or iodoakynone 3a as the reactants, the desired product 4a was not detected, which indicated that the reactivity and stability of C(sp)-X (X = Cl, Br, I) bonds were very critical for the success of this transformation". Thus, no desired product 4a was detected with chloroakynone or iodoakynone as the reactant, while bromoalkynone gave the desired product 4a in 66% yield.

As the requested by the reviewers and the editor, the ¹⁹F-NMR analysis spectra of the crude mixture of bromoalkynone, chloroalkynone, and iodoalkynone were given below to support our results. The ¹⁹F-NMR signal of **4a** is at δ = -42.09 ppm. The ¹⁹F-NMR signal of internal standard (PhCF₃) is at δ = -62.89 ppm.

For the ¹⁹F-NMR analysis (376 MHz, CDCl₃) of the crude mixture of bromoalkynone

For the ¹⁹F-NMR analysis (376 MHz, CDCl₃) of the crude mixture of chloroalkynone

For the ¹⁹F-NMR analysis (376 MHz, CDCl₃) of the crude mixture of iodoalkynone

--62.89

