B(C₆F₅)₃-Catalyzed Transfer Hydrogenations of Imines with Hantzsch Ester

Qiaotian Wang,^{a,b} Jingjing Chen,^{a,b} Xiangqing Feng,^{a,b*} and Haifeng Du^{a,b,*}

^a Beijing National Laboratory of Molecular Sciences, CAS Key Laboratory of

Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of

Sciences, Beijing 100190, China.

^b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Supporting Information

General consideration

All air-sensitive compounds were handled under an atmosphere of argon or in a nitrogen-filled glovebox. ¹H NMR and ¹³C NMR spectra were recorded on Bruker AV 400 at ambient temperature with CDCl₃ as solvent and TMS as internal standard. Chemical shifts (δ) were given in ppm, referenced to the residual proton resonance of TMS (0) or to the carbon resonance of the CDCl₃ (77.23). Coupling constants (*J*) were given in Hertz (Hz). All solvents were purified by conventional methods, distilled before use. Commercially available reagents were used without further purification. All the substrates were synthesized according to reported method.

General procedure for the metal-free catalytic transfer hydrogenation of imine (Scheme 3): Dissolving $B(C_6F_5)_3$ (0.0010 g, 0.002 mmol) in *n*-hexane (10 mL) to give a solution of catalyst (0.0002 M). Then to a sealed-tube were added imine 5 (0.6 mmol), Hantzsch Ester (0.1820 g, 0.72 mmol) and the solution of *n*-hexane with dissolved catalyst (0.0002 M, 3.0 mL, 0.0006 mmol) in a nitrogen atmosphere glovebox. After being sealed, the resulting mixture was stirred for 48 h at 120 °C. The reaction mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The crude residue was purified by flash chromatography on silica gel using *n*-hexane/DCM (20/1-50/1) as the fluent to give the desired product 7.

General procedure for the asymmetric transfer hydrogenation of imine (Scheme 5): To a sealed-tube were added HB(C₆F₅)₂ (0.0104 g, 0.03 mmol), chiral diene **8** (0.0102 g, 0.015 mmol) and dry toluene (1.5 mL). The resulting mixture was stirred for 5 min at room temperature, and substrate imine **5** (0.3 mmol) and Hantzsch Ester (0.0911 g, 0.36 mmol) was added in a nitrogen atmosphere glovebox. After being sealed, the resulting mixture was stirred for 12 h at 40 °C. The reaction mixture was cooled to room temperature, and the solvent was removed under reduced pressure, and the crude residue was purified by flash chromatography on silica gel using *n*-hexane/DCM (20/1-50/1) as the fluent to give the desired product **7**.

 Table S1. Optimization of reaction conditions for asymmetric transfer hydrogenations

 of imine 5a.^a

	N ^{Ph} H cł	HB(C ₆ F ₅) ₂ (10 mol niral diene 8a (5 m HEH 2 (1.2 equiv toluene, 12 h	%) ol %) √) → 〔〕	HN ^{Ph}
5a			7a	
Entry	Solvent	Temp. (°C)	Conv. $(\%)^b$	$Ee (\%)^{c}$
1	toluene	0	16	rac.
2	toluene	25	83	13
3	toluene	40	100	38
4	toluene	50	100	36
5	toluene	60	100	33
6	toluene	80	100	29
7	DCM	40	100	11
8	<i>n</i> -hexane	40	100	9
9	cyclohexane	e 40	100	24
10	<i>n</i> -pentane	40	100	32
11	<i>n</i> -heptane	40	100	27

^{*a*} All the reactions were carried out with chiral diene (5 mol %), $HB(C_6F_5)_2$ (10 mol %), imine **5a** (0.1 mmol) and Hantzsch ester **1** (0.12 mmol) in solvent (1.0 mL) unless otherwise noted. ^{*b*} Determined by crude ¹H NMR. ^{*c*} Determined by chiral HPLC.

Characterization of products

(*R*)-*N*-(1-Phenylethyl)aniline (7a): Colorless oil; [α]_D²⁰ = -6.8 (*c* 0.84, MeOH) (38%
ee) [lit.: [α]_D²⁰ = -4.3 (*c* 1.1, CHCl₃) (78% ee for *R*-isomer)]; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.35 (d, *J* = 7.6 Hz, 2H), 7.29 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.24-7.17 (m, 1H), 7.07 (dd, *J* = 7.6, 7.6 Hz, 2H), 6.65-6.60 (m, 1H), 6.49 (d, *J* = 8.0 Hz, 2H), 4.46 (q, *J* = 6.8 Hz, 1H), 3.99 (brs, 1H), 1.49 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.6, 145.5, 129.4, 128.9, 127.1, 126.1, 117.5, 113.6, 53.7, 25.3.
W. Li, G. Hou, M, Chang and X. Zhang, *Adv. Synth. Catal.*, 2009, **351**, 3123.

(*R*)-*N*-(1-(*p*-Tolyl)ethyl)aniline (7b): Yellow oil; [α]²⁰_D = +1.3 (*c* 0.99, MeOH) (37% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.09 (dd, *J* = 8.4, 7.6 Hz, 2H), 6.65-6.60 (m, 1H), 6.50 (d, *J* = 8.4 Hz, 2H), 4.45

(q, J = 6.8 Hz, 1H), 3.98 (brs, 1H), 2.31 (s, 3H), 1.48 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.6, 142.5, 136.6, 129.6, 129.3, 126.0, 117.4, 113.5, 53.4, 25.3, 21.3.

K. Ye, X. Wang, C. G. Daniliuc, G. Kehr and G. Erker, *Eur. J. Inorg. Chem.*, 2016, 368.

N-(1-(4-Ethylphenyl)ethyl)aniline (7c): Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.26 (d, J = 7.6 Hz, 2H), 7.13 (d, J = 7.6 Hz, 2H), 7.08 (dd, J = 7.6, 7.6 Hz, 2H), 6.66-6.59 (m, J = 7.2 Hz, 1H), 6.50 (d, J = 8.0 Hz, 2H), 4.45 (q, J = 6.4 Hz, 1H), 3.97 (brs, 1H), 2.61 (q, J = 7.6 Hz, 2H), 1.48 (d, J = 6.8 Hz, 3H), 1.21 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.7, 143.0, 142.7, 129.4, 128.4, 126.1, 117.4, 113.56, 53.4, 28.7, 25.2, 15.8.

Y. Liu and H. Du, J. Am. Chem. Soc., 2013, 135, 6810.

(*R*)-*N*-(1-(4-(*tert*-Butyl)phenyl)ethyl)aniline (7d): Yellow solid, m.p. 60-62°C; $[\alpha]_D^{20}$ = +2.1 (*c* 0.99, CH₂Cl₂) (20% ee) [lit.: $[\alpha]_D^{20}$ = +5.0 (*c* 0.50, CH₂Cl₂) (85% ee for *R*-isomer)]; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.29 (dd, *J* = 8.2, 8.2 Hz, 4H), 7.08 (dd, *J* = 8.0, 7.6 Hz, 2H), 6.66-6.60 (m, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 4.46 (q, *J* = 6.8 Hz, 1H), 3.98 (brs, 1H), 1.49 (d, *J* = 6.4 Hz, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.9, 147.7, 142.3, 129.4, 125.8, 125.8, 117.4, 113.5, 53.2, 34.7, 31.7, 25.0.

E. Kumaran and W. K. Leong, Organometallics, 2012, 31, 1068.

(*R*)-*N*-(1-(4-Methoxyphenyl)ethyl)aniline (7e): Yellow oil; $[\alpha]_{D}^{20} = -2.8$ (*c* 0.99, MeOH) (24% ee) [lit.: $[\alpha]_{D}^{20} = -6.2$ (*c* 0.55, MeOH) (84% ee for *R*-isomer); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.24 (d, *J* = 7.6 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 7.08 (dd, *J* = 8.4, 7.6 Hz, 2H), 6.66-6.59 (m, 1H), 6.51 (d, *J* = 8.4 Hz, 2H), 4.44 (q, *J* = 6.8 Hz, 1H), 3.97 (brs, 1H), 3.77 (s, 3H), 1.48 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.7, 147.6, 137.5, 129.3, 127.1, 117.4, 114.2, 113.5, 55.5, 53.1, 25.2.

A. V. Malkov, S. Stončius, K. N. MacDougall, A. Mariani, G. D. MacGeoch and P.

Kočovský, Tetrahedron, 2005, 62, 264.

(*R*)-*N*-(1-(4-Fluorophenyl)ethyl)aniline (7f): Yellow oil; $[\alpha]_{D}^{20} = -11.8$ (*c* 1.01, MeOH) (37% ee); ¹H NMR (300 MHz, CDCl₃, ppm) δ 7.38-7.28 (m, 2H), 7.13-7.05 (m, 2H), 7.04-6.94 (m, 2H), 6.69-6.61 (m, 1H), 6.48 (d, *J* = 7.8 Hz, 2H), 4.46 (q, *J* = 6.6 Hz, 1H), 4.00 (brs, 1H), 1.49 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.0 (d, *J* = 240.0 Hz), 147.3, 141.2 (d, *J* = 3.0 Hz), 141.2, 129.3, 127.6 (d, *J* = 8.0 Hz), 117.7, 115.7 (d, *J* = 21.0 Hz), 113.6, 53.1, 25.4.

W. Pan, Y. Deng, J. He, B. Bai and H. Zhu, Tetrahedron, 2013, 69, 7253.

(*R*)-*N*-(1-(4-Chlorophenyl)ethyl)aniline (7g): Yellow oil; $[\alpha]_{D}^{20} = +0.7$ (*c* 0.83, MeOH) (36% ee); ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.38-7.27 (m, 4H), 7.18-7.10 (m, 2H), 6.74-6.66 (m, 1H), 6.51 (d, *J* = 8.0 Hz, 2H), 4.47 (q, *J* = 6.8 Hz, 1H), 4.02

(brs, 1H), 1.50 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.3, 144.12, 132.7, 129.5, 129.1, 127.6, 117.8, 113.6, 53.3, 25.4.

W. Pan, Y. Deng, J. He, B. Bai and H. Zhu, Tetrahedron, 2013, 69, 7253.

(*R*)-*N*-(1-(4-(Trifluoromethyl)phenyl)ethyl)aniline (7h): Yellow oil; $[\alpha]_{D}^{20} = -11.1$ (*c* 0.98, CH₂Cl₂) (33% ee) [lit.: $[\alpha]_{D}^{20} = -23.1$ (*c* 0.59, CH₂Cl₂) (85% ee for *R*-isomer)]; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.57 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.4 Hz, 2H), 7.12-7.05 (m, 2H), 6.70-6.64 (m, 1H), 6.47 (d, *J* = 7.6 Hz, 2H), 4.52 (q, *J* = 6.8 Hz, 1H), 4.04 (brs, 1H), 1.52 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 149.7, 147.0, 129.6, 129.4, 129.2, 126.4, 125.9 (q, *J* = 4.0 Hz), 123.1, 117.9, 113.5, 53.5, 29.9, 25.3, 1.2.

M. Rueping, E. Sugiono, C. Azap, T. Theissmann and M. Bolte, Org. Lett., 2005, 7, 3781.

HN^{_Ph} Me

N-(1-(*m*-Tolyl)ethyl)aniline (7i): Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm) δ
7.24-7.12 (m, 3H), 7.08 (dd, J = 7.6, 7.6 Hz, 2H), 7.03 (d, J = 7.2 Hz, 1H), 6.66-6.61 (m, 1H), 6.51 (d, J = 8.0 Hz, 2H), 4.44 (q, J = 6.8 Hz, 1H), 3.98 (brs, 1H), 2.33 (s, 3H), 1.49 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.6, 145.5, 138.4, 129.3, 128.7, 127.9, 126.8, 123.1, 117.4, 113.5, 53.7, 25.2, 21.8.

A. Lefranc, Z.-W. Qu, S. Grimme and M. Oestreich, Chem. Eur. J., 2016, 22, 10009.

N-(1-(3-Methoxyphenyl)ethyl)aniline (7j): Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.13 (dd, *J* = 8.0, 7.6 Hz, 1H), 6.98 (dd, *J* = 7.6, 7.2 Hz, 2H), 6.88-6.81 (m, 2H), 6.69-6.63 (m, 1H), 6.54 (dd, *J* = 7.6, 7.2 Hz, 1H), 6.41 (d, *J* = 8.4 Hz, 2H), 4.34 (q, *J* = 6.8 Hz, 1H), 3.90 (s, 1H), 3.65 (s, 3H), 1.39 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.2, 147.6, 147.45, 130.0, 129.4, 118.5, 117.6, 113.6, 112.3, 112.0, 55.4, 53.8, 25.3.

A. Lefranc, Z.-W. Qu, S. Grimme and M. Oestreich, Chem. Eur. J., 2016, 22, 10009.

N-(1-(Naphthalen-2-yl)ethyl)aniline (7k): Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.83-7.74 (m, 4H), 7.50-7.45 (m, 1H), 7.45-7.36 (m, 2H), 7.10-7.02 (m, 2H), 6.66-6.58 (m, 1H), 6.53 (d, *J* = 8.0 Hz, 2H), 4.61 (q, *J* = 6.8 Hz, 1H), 4.08 (brs, 1H), 1.55 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 147.6, 143.1, 133.9, 133.0, 129.4, 128.8, 128.1, 128.0, 126.3, 125.8, 124.7, 124.5, 117.6, 113.7, 54.0, 25.3.

S. Guizzetti, M. Benaglia, F. Cozzi and R. Annunziata, Tetrahedron, 2009, 65, 6354.

(*R*)-4-Methyl-*N*-(1-phenylethyl)aniline (71): Yellow oil; $[\alpha]_D^{20} = -4.0$ (*c* 1.0, EtOAc) (16% ee) [lit.: $[\alpha]_D^{25} = +27.3$ (*c* 0.7, EtOAc) (91% ee for *S*-isomer)]; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.40-7.25 (m, 4H), 7.24-7.16 (m, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.42 (d, *J* = 8.0 Hz, 2H), 4.44 (q, *J* = 6.4 Hz, 1H), 3.86 (brs, 1H), 2.17 (s, 3H), 1.48 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 145.7, 145.3, 129.9, 128.9, 128.5, 127.1, 126.6, 126.1, 113.7, 53.9, 25.3, 20.6.

D. Pei, Z. Wang, S. Wei, Y. Zhang and J. Sun, Org. Lett., 2006, 8, 5913.

4-Methoxy-*N***-(1-phenylethyl)aniline (7m)**: Yellow oil; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.35 (d, *J* = 7.5 Hz, 2H), 7.33-7.26 (m, 2H), 7.21 (d, *J* = 6.0 Hz, 1H), 6.68 (d, *J* = 9.0 Hz, 2H), 6.46 (d, *J* = 9.0 Hz, 2H), 4.40 (q, *J* = 7.0 Hz, 1H), 3.77 (brs, 1H), 3.67 (s, 3H), 1.48 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃, ppm) δ 150.8, 144.5, 140.5, 127.6, 125.8, 124.8, 113.7, 113.5, 54.7, 53.2, 24.1.

I. Chatterjee and M. Oestreich, Angew. Chem., Int. Ed., 2015, 54, 1965.

3-Methoxy-*N***-(1-phenylethyl)aniline (7n):** Yellow oil; ¹H NMR (400 MHz, CDCl₃, ppm) δ 7.37-7.24 (m, 4H), 7.23-7.14 (m, 1H), 6.97 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.20 (d, *J* = 8.0 Hz, 1H), 6.13 (d, *J* = 7.6 Hz, 1H), 6.05 (s, 1H), 4.45 (q, *J* = 6.4 Hz, 1H), 4.03 (brs, 1H), 3.65 (s, 3H), 1.47 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.0, 149.0, 145.5, 130.1, 128.9, 127.2, 126.1, 106.8, 102.7, 99.7, 55.2, 53.8, 25.2. X.-Y. Liu and C.-M. Che, *Org. Lett.*, 2009, **11**, 4204.

N-(1-Phenylpropyl)aniline (70): Yellow oil; ¹H NMR (500 MHz, CDCl₃, ppm) δ 7.37-7.24 (m, 4H), 7.23-7.17 (m, 1H), 7.10-7.02 (t, *J* = 7.5 Hz, 2H), 6.65-6.58 (m, 1H), 6.50 (d, *J* = 8.0 Hz, 2H), 4.21 (t, *J* = 6.7 Hz, 1H), 4.03 (brs, 1H), 1.80 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃, ppm) δ 146.5, 142.9, 128.0, 127.4, 125.83, 125.4, 116.1, 112.2, 58.7, 30.6, 9.8.

I. Chatterjee and M. Oestreich, Angew. Chem., Int. Ed., 2015, 54, 1965.

The chromatography for the determination of enantiomeric excess

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (98/2); Flow rate: 0.5 mL/min; Detection: UV 254 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 1.0 mL/min; Detection: UV 254 nm

mAU 8.661 0.054 1400 1200 1000 800 600 400 200 0 0 5 10 15 20 25 min |Peak| RT |Area % | Area | [min] |-----|-----| | # | -----| | | 8.661| 49.661|2.084e4| 1| 2| 10.054| 50.339|2.112e4|

Chiral

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (98/2); Flow rate: 0.8 mL/min; Detection: UV 254 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (99/1); Flow rate: 0.8 mL/min; Detection: UV 254 nm

Chiral

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (99/1); **Flow rate:** 1.0 mL/min; **Detection:** UV 254 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 0.5 mL/min; **Detection:** UV 254 nm

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., **Eluent:** Hexanes/IPA (98/2); **Flow rate:** 0.6 mL/min; **Detection:** UV 254 nm

Chiral

HPLC Conditions: Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd., Eluent: Hexanes/IPA (98/2); Flow rate: 0.5 mL/min; Detection: UV 254 nm

Chiral

S18

\$31

S42

