Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supplementary data for A fluorescent 3,7-bis-(naphthalen-1-ylethynylated)-2'-deoxy-adenosine analogue reports thymidine in complementary DNA by a large emission Stokes shift

Masaki Yanagi,^a Azusa Suzuki,^a Robert H. E. Hudson,^b and Yoshio Saito^{a*}

a) Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan Email Address: <u>saitoy@chem.ce.nihon-u.ac.jp</u>

> b) Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

Contents

Figure S1: UV absorption spectra of ${}^{3n7nz}A(1)$ and ${}^{37nz}A(2)$ in various solvents of different polarities
Figure S2: Determination of thermal melting temperature (T_m) for ODN1(^{37nz} A)
Figure S3: Determination of thermal melting temperature (T_m) for ODN1(^{3n7nz} A) and ODN2(^{3n7nz} A)
Figure S4: CD spectra of $ODN(^{3n7nz}A)$ hybridized with $cODN(N)$, (N = A, G, C, or T)
Figure S5: UV absorption spectra of $ODN1(^{3n7nz}A)$ and $ODN1(^{37nz}A)$ hybridized with $cODN1(N)$
Figure S6: UV absorption and normalized emission spectra of $ODN2(^{3n7nz}A)$ hybridized with $cODN2(N)$ S ²
Table S1: MALDI-TOF-MS spectral data for ODN(^{3n7nz} A) and ODN(^{37nz} A)
Figure S7-S48: ¹ H- and ¹³ C-NMR data of newly synthesized compounds

Figure S1. UV absorption spectra of (a) ${}^{37nz}A(2)$ and (b) ${}^{3n7nz}A(1)$ in various solvents of different polarities. All measurments were performed at a concentration of 10 μ M.

Figure S2. Thermal melting temperature (T_m) of ODN1(^{37nz}A) hybridized with cODN1(N), (N = A, T, G, or C) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S3. Thermal melting temperature (T_m) of (a) ODN1(^{3n7nz}A) hybridized with cODN1(N), (N = A, T, G, or C) and (b) ODN2(^{3n7nz}A) hybridized with cODN2(N), (N = A, T, G, or C) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S4. CD spectra of (a) ODN1(^{3n7nz}A) hybridized with cODN1(N), (N = A, T, G, or C) and (b) ODN2(^{3n7nz}A) hybridized with cODN2(N), (N = A, T, G, or C) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S5. UV absorption spectra of (a) ODN1(^{37nz}A) hybridized with cODN1(N), (N = A, T, G, or C) and (b) ODN1(^{3n7nz}A) hybridized with cODN1(N), (N = A, T, G, or C) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S6. (a) UV absorption and (b) normalized fluorescent spectra of ODN2($^{3n7nz}A$) hybridized with cODN2(**N**), (N = A, T, G, or C) (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

ODNs	Sequences	MALDI-TOF-MS	
		calcd. $[M + H]^+$	found $[M + H]^+$
$ODN1(^{37nz}A)$	5'-d(CGCAAT ^{37nz} A TAACGC)-3'	4077.85	4077.55
$\frac{\text{ODN1}(^{3n7nz}A)}{\text{ODN2}(^{3n7nz}A)}$	5'-d(CGCAAT ^{3n7nz} ATAACGC)-3' 5'-d(CGCAAC ^{3n7nz} ACAACGC)-3'	4228.03 4198.01	4227.83 4197.08

 Table S1. MALDI-TOF-MS spectral data for the ODNs

Figure S7. ¹H-NMR spectrum of compound **4** (DMSO-*d*₆)

Figure S8. ¹³C-NMR spectrum of compound 4 (DMSO- d_6)

Figure S9. ¹H-NMR spectrum of compound 5 (DMSO-*d*₆)

Figure S10. ¹³C-NMR spectrum of compound 5 (DMSO-*d*₆)

Figure S11. ¹H-NMR spectrum of compound **5** (DMSO-*d*₆)

Figure S12. ¹³C-NMR spectrum of compound 5 (DMSO-*d*₆)

Figure S13. ¹H-NMR spectrum of compound 7 (DMSO-*d*₆)

Figure S14. ¹³C-NMR spectrum of compound 7 (DMSO-*d*₆)

Figure S15. ¹H-NMR spectrum of compound **9a** (DMSO-*d*₆)

Figure S16. ¹³C-NMR spectrum of compound 9a (DMSO-*d*₆)

Figure S17. ¹H-NMR spectrum of compound **9b** (DMSO-*d*₆)

Figure S18. ¹³C-NMR spectrum of compound 9b (DMSO-*d*₆)

Figure S19. ¹H-NMR spectrum of compound 10a (DMSO-*d*₆)

Figure S20. ¹³C-NMR spectrum of compound 10a (DMSO-*d*₆)

Figure S21. ¹H-NMR spectrum of compound 10b (DMSO-*d*₆)

Figure S22. ¹³C-NMR spectrum of compound 10b (DMSO-*d*₆)

Figure S23. ¹H-NMR spectrum of compound 11a (DMSO-*d*₆)

Figure S24. ¹³C-NMR spectrum of compound 11a (DMSO-*d*₆)

Figure S25. ¹H-NMR spectrum of compound 11b (DMSO-*d*₆)

Figure S26. ¹³C-NMR spectrum of compound 11b (DMSO-*d*₆)

Figure S27. ¹H-NMR spectrum of compound 12 (DMSO-*d*₆)

Figure S28. ¹³C-NMR spectrum of compound 12 (DMSO-*d*₆)

Figure S29. ¹H-NMR spectrum of compound **13** (DMSO-*d*₆)

Figure S30. ¹³C-NMR spectrum of compound 13 (DMSO-*d*₆)

Figure S31. ¹H-NMR spectrum of compound **2** (DMSO-*d*₆)

Figure S32. ¹³C-NMR spectrum of compound **2** (DMSO- d_6)

Figure S33. ¹H-NMR spectrum of compound 14 (CDCl₃)

Figure S34. ¹³C-NMR spectrum of compound 14 (CDCl₃)

Figure S35. ¹H-NMR spectrum of compound 15 (CDCl₃)

Figure S36. ¹³C-NMR spectrum of compound 15 (CDCl₃)

Figure S37. ¹H-NMR spectrum of compound 16 (CDCl₃)

Figure S38. ¹³C-NMR spectrum of compound 16 (CDCl₃)

Figure S39. ¹H-NMR spectrum of compound 1 (CDCl₃)

Figure S40. ¹³C-NMR spectrum of compound 1 (DMSO-*d*₆)

Figure S41. ¹H-NMR spectrum of compound 17a (CDCl₃)

Figure S42. ¹³C-NMR spectrum of compound 17a (CDCl₃)

Figure S43. ¹H-NMR spectrum of compound 17b (CDCl₃)

Figure S44. ¹³C-NMR spectrum of compound **17b** (CDCl₃)

Figure S45. ¹H-NMR spectrum of compound 18a (acetone-*d*₆)

Figure S46. ¹³C-NMR spectrum of compound **18a** (acetone- d_6)

Figure S47. ¹H-NMR spectrum of compound 18b (CDCl₃)

Figure S48. ¹³C-NMR spectrum of compound 18b (CDCl₃)