Supporting Information for:

Synthesis of chiral fluorinated acyclic quaternary carbon center via

stereodefined polysubstituted silyl enolates

Jian Qiang Huang, Zackaria Nairoukh and Ilan Marek*

Table of Contents

1
eneral informationx
2
eneral procedures for the preparation of silyl enol ether derivativesx
3 G
eneral procdure for the fluorination reactionx
4
nalytical datas of fluorination productsx
5 D
erivative of fluorinated product $2g_a$ and $2g_j$ x
6
creening for asymmetric catalytic formation of fluorinated acyclic quaternary
carbon centerx
7
eferencesx
8X
-ray crystallographic analysis datax
9N
MR spectra and HPLC spectra of fluorination productsx

1. General information

All reactions were carried out in a flame-dried glassware under positive pressure of argon in dry solvents using standard Schlenk techniques unless otherwise indicated. Progress of the reactions was monitored by analytical TLC using glass plates pre-coated with silica gel with F254 indicator (Merck). Visualization of spots was done using UV light (254 nm), iodine, p-anisaldehyde, phosphomolybdic acid (PMA), and Hanessian's (cerium ammonium molybdate) stains. All organometallic compounds, dry solvents and reagents were transferred using plastic single-use graduated syringes and ovendried stainless steel needles. Purification of crude mixtures was accomplished by preparative flash column chromatography on silica gel 60A (GraceResolv), aluminum oxide 90 neutral (Merck) or Florisil® Adsorbent 100-200 mesh (Fluka) using gradient mixtures of ethyl acetate / nhexane (unless otherwise indicated). ¹H and ¹³C NMR spectra were measured on Bruker Avance 200 (200 MHz ¹H, 50 MHz ¹³C), Bruker Avance 300 (300 MHz ¹H, 75 MHz ¹³C) or Bruker Avance AV 400 (400 MHz ¹H, 100 MHz ¹³C) spectrometers. Chemical shifts values (δ) are reported in ppm (calibration of spectra to the residual peak of chloroform: δ = 7.26 ppm (s) for ¹H NMR; $\delta = 77.00$ ppm for ¹³C NMR). All the proton spectra reported as following: δ value (multiplicity, J coupling constant (in Hz), number of nuclei). Multiplicity contractions used: (s) - singlet, (d) - doublet, (dd) - doublet of doublet, (t) - triplet, (q) - quartet, (m) – multiplet, and (br) – broad signal. Optical specific rotations are measured with an UniPol L 1000. High performance liquid chromatography (HPLC) spectra were recorded on AgilentTM 1100 Series equipment with a variable wavelength UV analytical detector. MS and HRMS mass spectrometry was carried out on a APCI instrument by Maxis Impact (Bruker) and on a LCT Premier (Waters).

All solvents were purified and dried immediately prior to use: THF and diethyl ether (HPLC grade, non-stabilized, BioLab) were dried using Innovative TechnologyPureSolv PS-MD-2 solvent purifier (aluminum oxide columns) and kept under positive pressure of nitrogen (99.9999% purity grade); toluene was distilled from sodium metal under argon; dichloromethane was distilled from calcium hydride under argon. Methyllithium solution in diethyl ether (1.60 M), n-butyllithium solution in hexane (1.60 M), n-pentyllithium solution in heptane (2.20M), and *n*-hexyllithium solution in hexane (2.30M) were purchased from Aldrich and used as received. tert-Butylhydroperoxide (TBHP) solution in nonane (5.5 M, over 4Å MS) and terminal alkynes, N-bromosuccinimide, silver nitrate, (S)-4-benzyl-2-oxazolidinone, copper (I) bromide – dimethylsulfide complex, copper(II) sulfate pentahydrate, 1,10-phenanthroline, trimethylchlorosilane (TMSCl), triethylchlorosilane (TESCl), tert-butyldimethylsilyl chloride

(TBSCl), were purchased from commercial suppliers. (*S*)-5,5-dimethyl-4-benzyl -2-oxazolidinone (SuperQuat) and (*S*)-5,5-diethyl-4-benzyl -2-oxazolidinone was prepared from commercially available starting materials and reagents according to published procedure ¹. All starting chiral ynamides were prepared on a multi-gram scale according to a modified literature procedure².

2. General procedure for the preparation of silyl enol ether derivatives

CuBr•Me₂S complex (1.10 mmol, 1.1 equiv) was placed into a flame-dried three-necked round-bottomed flask equipped with a magnetic stirring bar and connected to an argon line. Dry diethyl ether (10.0 ml) was added through a septum, and the system was cooled to -50 °C using acetone-liquid nitrogen bath. A solution of alkyllithium (1.30 mmol, 1.3 equiv), was added dropwise, and the reaction mixture was allowed to warm to -40 °C and stirred for 30 min at this temperature to form a bright yellow opaque solution in case of methyllithium, dark-yellow in case of *n*-butyllithium, orange to dark-brown in case of *n*-pentyl and *n*-hexyllithium. The reaction mixture was cooled to -50 °C and a solution of the starting alkynyl carbamate (1.00 mmol, 1.0 equiv) in 3 ml of diethyl ether was added dropwise; the reaction mixture was allowed to warm to -40 °C, and stirred at this temperature for 1 h (monitored by TLC on silica gel using 20% ethyl acetate in hexane as eluent) to form a solution of vinylcuprate.

In a separate flask connected to an argon line, a solution of 1.54 mmol (1.54 equiv) of *t*-BuOOLi was prepared as follow. Dry THF (5.0 ml) was added to flame dried three-necked round-bottomed flask *via* a syringe followed by addition of a solution of *tert*-butyl hydroperoxide in nonane (0.28 ml of commercially available 5.5 M solution; 1.54 equiv, 1.54 mmol). The resulting solution was cooled to -90 °C and a solution of methyllithium (1.60 M in diethyl ether, 1.80 mmol, 1.80 equiv) was added dropwise keeping the indicated temperature. The resulting solution of lithium *tert*butylperoxide was allowed to warm to -80 °C and stir for 10 min prior to use in the following reaction step. Upon completion of lithium *tert*-butylperoxide in THF (1.54 mmol, 1.54 equiv) was transferred *via* a cannula. The resulting reaction mixture was allowed to warm up slowly to -80 °C and stirred at the indicated temperature for 2 h (monitored by TLC on

silica gel using 20% ethyl acetate in hexane as eluent) to form a brown opaque solution.

Upon completion of the second step, *tert*-butyldimethylsilyl chloride (TBSCl) (3.2 mmol, 3 equiv) in 5 ml THF was added to the reaction mixture at -80 °C and then warm up to room temperature. The mixture was stirred for about 3 hours (monitored by TLC on silica gel using 20% ethyl acetate in hexane as eluent). The reaction mixture was filtered through prewashed short pad of silica, and then washed thoroughly with 20% ethyl acetate in hexane. The solvent was evaporated and pure product silyl enol ether was obtained by flash column chromatography (SiO₂, eluting with 50:1 to 15:1 hexane/ethyl acetate).

3. General procdure for the fluorination reaction

1.5 ml solvent was added to a flame-dried tube contained silyl enol ether (0.1 mmol), and then stirred at the indicated temperature. "F" scource (1.4 eq) was added to the reaction mixture, and then slowly warm up to room temperature overnight. After the starting material was consumed completely (monitored by TLC), 2 ml water (2 ml) was added to the reaction mixture to quench the reaction. The aqueous solution was extracted with diethyl ether (3×5 mL) and the organic layer was combined, dried (anhydrous Na₂SO₄) and concentrated in vacuo. The dr was determined by ¹⁹F NMR of the crude product, and pure product was obtained by column chromatography.

Screening of additives (LiCl, AcOLi, LiF, CsF, Sm(OTf)₃, Zn(OTf)₂, Sc(OTf)₃) experiments give no better results.

4. Analytical datas of silyl enol ether derivatives and fluorination products

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-methylhex-1-enyl)-5,5-dimethyloxazolidin-2-o ne (1g_a)

Purification was performed with hexane/ethyl acetate = 25/1 to provide $1G_a$ in 65% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.08-0.14 (m, 6H), 0.83-0.88 (m, 3H), 0.91 (s, 9H), 1.00 (s, 3H), 1.21-1.29 (m, 4H), 1.34 (s, 3H), 1.41-1.48 (m, 1H), 1.59 (s, 3H), 1.94-2.03 (m, 1H), 2.48 (dd, J = 14.0, 10.4 Hz, 1H), 3.00 (dd, J = 14.0, 4.0 Hz, 1H), 3.93 (dd, J = 10.4, 4.0 Hz, 1H), 7.02-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -3.9, 14.1, 15.1, 18.0, 22.5, 23.0, 25.7, 27.3, 30.0, 32.0, 33.7, 65.1, 81.5, 118.0, 126.7, 128.6, 128.9, 131.9, 136.8, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.2; [MH]⁺ Calcd. for C₂₅H₄₂NO₃Si 432.2928; found: 432.2933

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-methyloct-1-enyl)-5,5-dimethyloxazolidin-2-o ne (1g_b)

Purification was performed with hexane/ethyl acetate = 25/1 to provide $1G_b$ in 72% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.08 (s, 3H), 0.13 (s, 3H), 0.82 (s, 3H), 0.90-1.02 (m, 12H), 1.05-1.25 (m, 7H), 1.34 (s, 3H), 1.42-1.52 (m, 1H), 1.59 (s, 3H), 1.85-2.05 (m, 2H), 2.45-2.53 (m, 1H), 2.96-3.05 (m, 1H), 3.91-3.95 (m, 1H), 7.05-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -3.9, 14.1, 15.1, 18.0, 22.4, 22.6, 25.7, 27.3, 27.8, 29.6, 31.8, 32.3, 33.7, 65.0, 81.5, 118.0, 126.7, 128.6, 128.8, 132.0, 136.8, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.2; [MH]⁺ Calcd. for C₂₇H₄₆NO₃Si 460.3241; found: 460.3304

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-ethyloct-1-enyl)-5,5-dimethyloxazolidin-2-one (1g_c)

Purification was performed with hexane/ethyl acetate = 25/1 to provide $1g_c$ in 56% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.09 (s, 3H), 0.15 (s, 3H), 0.80-1.00 (m, 18H), 1.15-1.30 (m, 7H), 1.34 (s, 3H), 1.40-1.52 (m, 1H), 1.85-2.05 (m, 3H), 2.08-2.20 (m, 1H), 2.48 (dd, J = 13.2, 10.8 Hz, 1H), 3.01 (dd, J = 14.0, 3.2 Hz, 1H), 3.94 (dd, J = 10.8, 3.2 Hz, 1H), 6.90-7.30 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.4, -3.8, 12.3, 14.0, 18.0, 21.5, 22.5, 22.7, 25.7, 27.3, 27.8, 29.7, 29.9, 31.8, 33.4, 65.1, 81.5, 124.0, 126.8, 128.7, 128.9, 131.7, 136.9, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 21.5; [MH]⁺ Calcd. for C₂₈H₄₈NO₃Si 474.3403; found: 474.3396

(*S*,*E*)-4-benzyl-3-(2-butyl-1-(tert-butyldimethylsilyloxy)oct-1-enyl)-5,5-dimethyloxazolidin-2-one (**1g**_d)

Purification was performed with hexane/ethyl acetate = 25/1 to provide $1g_d$ in 58% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.09 (s, 3H), 0.15 (s, 3H), 0.80-0.85 (m, 6H), 0.92 (s, 9H), 0.96 (s, 3H), 1.15-1.30 (m, 11H), 1.34 (s, 3H), 1.40-1.50 (m, 1H), 1.85-2.12 (m, 3H), 2.10-2.20 (m, 1H), 2.47 (dd, J = 14.0, 10.8 Hz, 1H), 3.00 (dd, J = 14.0, 3.6 Hz, 1H), 3.93 (dd, J = 10.8, 4.0 Hz, 1H), 7.07-7.26 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.4, -3.9, 14.0, 14.1, 18.0, 22.4, 22.6, 23.0, 25.7, 27.3, 27.8, 28.2, 29.8, 29.9, 30.0, 31.7, 33.3, 65.1, 81.5, 122.8, 126.8, 128.7, 128.8, 131.9, 136.9, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 21.6; [MH]⁺ Calcd. for C₃₀H₅₂NO₃Si 502.3711; found: 502.3734

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-methyl-4-phenylbut-1-enyl)-5,5-dimethyloxazo lidin-2-one (1g_e)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $1g_e$ in 61% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.09 (s, 3H), 0.16 (s, 3H), 0.92 (s, 9H), 0.95 (s, 3H), 1.25 (s, 3H), 1.67 (s, 3H), 2.07-2.13 (m, 1H), 2.20-2.27 (m, 1H), 2.28-2.38 (m, 1H), 2.60-2.70 (m, 1H), 2.75-2.83 (m, 2H), 3.89 (dd, J = 10.4, 4.0 Hz, 1H), 7.00-7.24 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -4.0, 15.2, 18.0, 22.4, 25.7, 27.2, 33.1, 34.1, 35.0, 64.9, 81.7, 116.7, 125.8, 126.6, 128.3, 128.5, 128.5, 128.8, 132.8, 136.7, 142.5, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.6; [MH]⁺ Calcd. for C₂₉H₄₂NO₃Si 480.2934; found: 480.2963

(*S*,*Z*)-4-benzyl-3-(2-butyl-1-(tert-butyldimethylsilyloxy)oct-1-enyl)-5,5-dimethyloxazolidin-2-one (1g_f)

Purification was performed with hexane/ethyl acetate = 25/1 to provide $1g_f$ in 48% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.09 (s, 3H), 0.15 (s, 3H), 0.76-0.80 (m, 3H), 0.83-0.88 (m, 3H), 0.92 (s, 9H), 0.97 (s, 3H), 1.15-1.30 (m, 11H), 1.34 (s, 3H), 1.40-1.50 (m, 1H), 1.85-1.95 (m, 2H), 1.95-2.05 (m, 1H), 2.11-2.20 (m, 1H), 2.47 (dd, J = 14.0, 10.8 Hz, 1H), 3.00 (dd, J = 14.0, 3.6 Hz, 1H), 3.93 (dd, J = 10.8, 4.0 Hz, 1H), 7.08-7.26 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.4, -3.9, 14.0, 14.0, 18.0, 22.6, 23.2, 25.7, 27.3, 27.6, 28.5, 29.6, 29.8, 30.1, 31.8, 33.3, 65.2, 81.5, 122.8, 126.8, 128.7, 128.8, 131.9, 136.8, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 21.6; [MH]⁺ Calcd. for C₃₀H₅₂NO₃Si 502.3711; found: 502.3707

(S,Z) - 4 - benzyl - 3 - (1 - (tert - butyl dimethyl silyloxy) - 2 - is opropyloct - 1 - enyl) - 5, 5 - dimethyl oxazolidin - 2 - is opropyloct - 1 - enyl oxazolidin - 2 - is opropyloct - 2 - is op

one $(1g_g)$

Purification was performed with hexane/ethyl acetate = 25/1 to provide $1g_g$ in 45% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.09 (s, 3H), 0.15 (s, 3H), 0.78-0.85 (m, 4H), 0.89-0.97 (m, 17H), 1.15-1.25 (m, 7H), 1.30-1.38 (m, 3H), 1.45-1.55 (m, 1H), 1.92 (t, J = 8.0 Hz, 2H), 2.51 (dd, J = 14.0, 10.8 Hz, 1H), 2.88 (m, 1H), 2.99 (dd, J = 14.0, 3.6 Hz, 1H), 3.93 (dd, J = 10.8, 4.0 Hz, 1H), 7.05-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.6, -3.7, 14.0, 18.0, 20.2, 21.8, 22.7, 25.7, 27.1, 28.0, 30.0, 30.4, 31.6, 65.4, 81.5, 126.8, 127.6, 128.7, 128.8, 132.0, 136.8, 154.9; ²⁹Si NMR (80 MHz, CDCl₃): δ 21.1; [MH]⁺ Calcd. for C₂₉H₅₀NO₃Si 488.3554; found: 488.3544

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-cyclopropylprop-1-enyl)-5,5-dimethyloxazolidi n-2-one (1g_h)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $1g_h$ in 52% yield as white solid . ¹H NMR (400 MHz, CDCl₃): δ 0.09 (s, 3H), 0.13 (s, 3H), 0.33-0.40 (m, 1H), 0.45-0.55 (m, 2H), 0.58-0.65 (m, 1H), 0.89 (s, 9H), 1.06 (s, 3H), 1.27 (s, 3H), 1.35 (s, 3H), 1.53-1.65 (m, 1H), 2.58 (dd, *J* = 14.0, 4.0 Hz, 1H), 3.03 (dd, *J* = 10.4, 4.0 Hz, 1H), 3.98 (dd, *J* = 10.4, 4.0 Hz, 1H), 7.06-7.24 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.1, -4.0, 3.6, 3.7, 10.9, 11.9, 18.0, 22.6, 25.7 27.4, 33.8, 65.2, 81.5, 117.3, 126.6, 128.5, 128.9, 132.8, 136.9, 154.6; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.1; [MH]⁺ Calcd. for C₂₄H₃₈NO₃Si 416.2621; found: 416.2650

(S, E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-phenylprop-1-enyl)-5,5-dimethyloxazolidin-2-one (1g_i)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $1g_i$ in 48% yield as white solid. ¹H NMR (400 MHz, CDCl₃): 0.14 (s, 3H), 0.25 (s, 3H), 0.79 (s, 3H), 0.87 (s, 3H), 0.94 (s, 9H), 1.93 (s, 3H), 2.14-2.19 (m, 1H), 2.81-2.86 (m, 1H), 3.82-3.85 (m, 1H), 7.12-7.26 (m, 10H); δ ¹³C NMR (100 MHz, CDCl₃): δ -5.1, -4.0, 18.1, 18.4, 21.3, 25.7, 26.4, 32.9, 65.9, 81.8, 120.2, 126.5, 126.7, 127.8, 128.0, 128.5, 128.7, 133.9, 136.6, 140.7, 155.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.8; [M]⁺ Calcd. for C₂₇H₃₇NO₃Si 451.2543; found: 451.2520

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-phenylbut-1-enyl)-5,5-dimethyloxazolidin-2-o ne (1g_i)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $1g_i$ in 46% yield as colorless oil.¹H NMR (400 MHz, CDCl₃): δ 0.14 (s, 3H), 0.27 (s, 3H), 0.72 (s, 3H), 0.83 (s, 3H), 0.86 (t, J = 7.6 Hz, 3H), 0.94 (s, 9H), 2.18 (dd, J = 14.0, 10.8 Hz, 1H), 2.25-2.35 (m, 1H), 2.40-2.50 (m, 1H), 2.91 (dd, J = 14.0, 3.6 Hz, 1H), 3.82 (dd, J = 10.8, 3.6 Hz, 1H), 7.05-7.35 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -4.0, 12.3, 18.0, 21.1, 24.7, 25.6, 26.4, 32.7, 65.8, 81.8, 126.4, 126.5, 126.7, 127.7, 128.6, 128.7, 128.7, 133.3, 136.7, 139.1, 155.4; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.1; [MH]⁺ Calcd. for C₂₈H₄₀NO₃Si 466.2777; found: 466.2770

(S,E)-4-benzyl-3-(1-(tert-butyldimethylsilyloxy)-2-phenylhex-1-enyl)-5,5-dimethyloxazolidin-2-o ne (1g_k)

Purification was performed with hexane/ethyl acetate = 20/1 to provide $1g_k$ in 57% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.14 (s, 3H), 0.28 (s, 3H), 0.75 (s, 3H), 0.77 (t, J = 6.4 Hz, 3H), 0.83 (s, 3H), 0.95 (s, 9H), 1.19-1.24 (m, 4H), 2.22 (dd, J = 14.0, 10.4 Hz, 1H),

2.28-2.35 (m, 1H), 2.47-2.45 (m, 1H), 2.94 (dd, J = 14.0, 4.0 Hz, 1H), 3.82 (dd, J = 10.4, 4.0 Hz, 1H), 7.15-7.30 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ -5.1, -3.8, 14.0, 18.1, 21.2, 22.8, 25.7, 26.5, 29.9, 31.5, 32.8, 65.8, 81.8, 125.2, 126.5, 127.8, 128.7, 128.7, 128.8, 133.6, 136.8, 139.5, 155.2; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.2; [M]⁺ Calcd. for C₃₀H₄₃NO₃Si 493.3012; found: 493.3015

(S,E)-4-benzyl-3-(11,11-diisopropyl-2,2,3,3,6,12-hexamethyl-4,10-dioxa-3,11-disilatridec-5-en-5-yl)-5,5-dimethyloxazolidin-2-one (**1g**)

Purification was performed with hexane/ethyl acetate = 30/1 to provide $1g_1$ in 54% yield as colorless oil .¹H NMR (400 MHz, CDCl₃): δ 0.08 (s, 3H), 0.13 (s, 3H), 0.91 (s, 9H), 0.96-1.01 (m, 24 H), 1.33 (s, 3H), 1.52-1.58 (m, 1H), 1.61 (s, 3H), 1.65-1.75 (m, 1H), 1.95-2.15 (m, 2H), 2.49 (dd, J = 14.0, 4.0 Hz, 1H), 3.99 (dd, J = 10.4, 4.0 Hz, 1H), 3.58-3.70 (m, 2H), 3.93 (dd, J = 10.4, 4.0 Hz, 1H), 7.05-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -4.0, 12.0 15.1, 18.0 18.0, 22.4, 25.7, 27.3, 28.9, 31.3, 33.7, 63.7, 65.0, 81.5, 117.5, 126.7, 128.6, 128.8, 132.2, 136.8, 154.7; ²⁹Si NMR (80 MHz, CDCl₃): δ 12.4, 22.3; [MH]⁺ Calcd. for C₃₃H₆₀NO₃Si₂ 590.4055; found: 590.4039

(S,E)-5-(4-benzyl-5,5-dimethyl-2-oxooxazolidin-3-yl)-5-(tert-butyldimethylsilyloxy)-4-methylpen t-4-enyl pivalate (1g_m)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $1g_m$ in 64% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.08 (s, 3H), 0.13 (s, 3H), 0.91 (s, 9H), 1.01 (s, 3H), 1.13 (s, 9H), 1.34 (s, 3H), 1.61 (s, 3H), 1.62-1.75 (m, 1H), 1.75-1.85 (m, 1H), 1.94-2.04 (m, 1H), 2.05-2.18 (m, 1H), 2.50 (dd, J = 14.0, 10.0 Hz, 1H), 2.99 (dd, J = 14.0, 4.4 Hz, 1H), 3.90-4.07 (m, 3H), 7.05-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -4.0, 15.1, 18.0, 22.5, 25.7, 27.0, 27.2, 27.3, 29.1, 33.7, 38.7, 64.5, 64.9, 81.6, 116.6, 126.7, 128.6, 128.8, 132.7, 136.6, 154.7, 178.5; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.7; [MH]⁺ Calcd. for C₂₉H₄₈NO₅Si 518.3302; found: 518.3363

(S,E)-5-(4-benzyl-5,5-dimethyl-2-oxooxazolidin-3-yl)-5-(tert-butyldimethylsilyloxy)-4-methylpen t-4-enyl benzoate (1g_n)

Purification was performed with hexane/ethyl acetate = 12/1 to provide $1g_n$ in 64% yield as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 0.08 (s, 3H), 0.14 (s, 3H), 0.91 (s, 9H), 0.97 (s, 3H), 1.21 (s, 3H), 1.64 (s, 3H), 1.77-1.86 (m, 1H), 1.92-2.00 (m, 1H), 2.06-2.15 (m, 1H), 2.15-2.25 (m, 1H), 2.44 (d, *J* = 14.0, 10.0 Hz, 1H), 2.96 (dd, *J* = 14.0, 4.4 Hz, 1H), 3.92 (dd, *J* = 10.0, 4.4 Hz, 1H), 4.20-4.35 (m, 2H), 7.00-7.05 (m, 2H), 7.10-7.15 (m, 1H), 7.17-7.22 (m, 2H), 7.32-7.37 (m, 2H), 7.42-7.50 (m, 1H), 7.95-8.02 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ -5.2, -4.0, 15.0, 18.0, 22.4, 25.7, 27.0, 27.2, 29.1, 33.6, 64.9, 65.0, 81.6, 116.5, 126.7, 128.3, 128.5, 128.7, 129.6, 132.8, 154.7, 166.6; ²⁹Si NMR (80 MHz, CDCl₃): δ 22.7; [MH]⁺ Calcd. for C₃₁H₄₄NO₅Si 538.2989; found: 538.2986

(S)-4-benzyl-3-((R)-2-fluoro-2-methylhexanoyl)-5,5-dimethyloxazolidin-2-one (2ga)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $2g_a$ as colorless oil, yield 90%, dr 93:7. ¹H NMR (400 MHz, CDCl₃): δ 0.83 (t, J = 6.8 Hz, 3H), 1.27-1.31 (m, 10H), 1.62 (d, J = 22 Hz, 3H), 1.79-1.95 (m, 1H), 2.07-2.25 (m, 1H), 2.85 (dd, J = 14.4, 9.6 Hz, 1H), 3.09 (14.4, 4.0 Hz, 1H), 4.42 (dd, J = 9.6, 4.0 Hz, 1H), 7.20-7.35 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ

13.6, 22.1, 22.3(d, J_{C-F} = 24.2 Hz), 22.6, 25.2 (d, J_{C-F} = 3.5 Hz), 28.0, 35.1, 36.6, 36.8, 65.4, 82.6, 97.7 (d, J_{C-F} = 184.3 Hz), 126.9, 128.7, 129.1, 136.6, 151.0, 172.7 (d, J_{C-F} = 26.8 Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -148.5(m, 1F, major diastereomer), -148.0 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₁₉H₂₇NO₃F 336.1975; found: 336.1976.

(S)-4-benzyl-3-((R)-2-fluoro-2-methyloctanoyl)-5,5-dimethyloxazolidin-2-one (2gb)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $2g_b$ as colorless oil, yield 81%, dr 92:8. ¹H NMR (400 MHz, CDCl₃): δ 0.80 (t, J = 6.8 Hz, 3H), 1.25-1.50 (m, 14H), 1.62 (d, J = 22 Hz, 3H), 1.84-1.88 (m, 1H), 2.10-2.22 (m, 1H), 2.85 (dd, J = 14.4, 9.6 Hz, 1H), 3.10 (dd, J = 14.4, 4.0 Hz, 1H), 4.42 (dd, J = 9.6, 4.0 Hz, 1H), 7.16-7.24 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 22.2, 22.3, 22.5, 23.1 (d, $J_{C-F} = 3.6$ Hz), 28.0, 29.2, 31.6, 35.2, 37.0 (d, $J_{C-F} = 22.3$ Hz), 65.4, 82.6, 97.8 (d, $J_{C-F} = 184.3$ Hz), 126.9, 128.7, 129.1, 136.6, 151.0, 172.8 (d, $J_{C-F} = 26.8$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -148.4(m, 1F, major diastereomer), -147.9 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₂₁H₃₁NO₃F 364.2272; found: 364.2282.

(S)-4-benzyl-3-((R)-2-ethyl-2-fluorooctanoyl)-5,5-dimethyloxazolidin-2-one (2gc)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $2g_c$ as colorless oil, yield 76%, dr 90:10. ¹H NMR (400 MHz, CDCl₃): δ 0.80 (t, J = 6.8 Hz, 3H), 0.87 (t, J = 6.8 Hz, 3H), 1.18-1.27 (m, 13H), 1.28-1.32 (m, 1H), 1.78-2.00 (m, 2H), 2.15-2.28 (m, 2H), 2.82 (dd, J = 14.4, 9.6 Hz, 1H), 3.11 (dd, J = 14.4, 4.0 Hz, 1H), 4.48 (dd, J = 9.6, 4.0 Hz, 1H), 7.18-7.26 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 7.8 (d, $J_{C-F} = 5.0$ Hz), 14.0, 22.2, 22.5, 23.1 (d, $J_{C-F} = 3.6$ Hz), 28.1, 28.4 (d, $J_{C-F} = 23.1$ Hz), 29.3, 31.6, 35.1, 35.2 (d, $J_{C-F} = 22.4$ Hz), 65.6, 82.4, 101.0 (d, $J_{C-F} = 185.8$ Hz), 126.9, 128.7, 129.1, 136.7, 151.0, 172.2 (d, $J_{C-F} = 26.8$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -156.3 (m, 1F); HRMS: [MH]⁺ Calcd. for C₂₂H₃₃NO₃F 378.2444; found: 378.2441.

(S)-4-benzyl-3-((R)-2-butyl-2-fluorooctanoyl)-5,5-dimethyloxazolidin-2-one (2g_d)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $2g_d$ as colorless oil, yield 74%, dr 84:16. ¹H NMR (400 MHz, CDCl₃): δ 0.76-0.86 (m, 6H), 1.05-1.31 (m, 16H), 1.33-1.47 (m, 2H), 1.80-1.95 (m, 2H), 2.11-2.33 (m, 2H), 2.83 (dd, J = 14.4, 9.6 Hz, 1H), 3.11 (dd, J = 14.4, 4.0 Hz, 1H), 4.48 (dd, J = 9.6, 4.0 Hz, 1H), 7.15-7.28 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 13.9, 14.0, 22.3, 22.5, 22.7, 23.1 (d, $J_{C-F} = 3.5$ Hz), 25.7 (d, $J_{C-F} = 3.7$ Hz), 28.1, 29.3, 31.6, 35.1 (d, $J_{C-F} = 21.8$ Hz), 35.2, 35.5 (d, $J_{C-F} = 22.4$ Hz), 65.6, 82.4, 100.8 (d, $J_{C-F} = 185.4$ Hz), 126.9, 128.7, 129.1, 136.7, 151.0, 172.2 (d, $J_{C-F} = 26.7$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -153.9 (m, 1F); HRMS: [MH]⁺ Calcd. for C₂₄H₃₇NO₃F 406.2752; found: 406.2748.

(*S*)-4-benzyl-3-((*R*)-2-fluoro-2-methyl-4-phenylbutanoyl)-5,5-dimethyloxazolidin-2-one (**2g**_e) Purification was performed with hexane/ethyl acetate = 12/1 to provide **2g**_e as colorless oil, yield 75%, dr 92:8. ¹H NMR (400 MHz, CDCl₃): δ 1.28 (s, 3H), 1.30 (s, 3H), 1.68 (d, *J* = 22.0 Hz, 3H), 2.15-2.25 (m, 1H), 2.45-2.65 (m, 2H), 2.70-2.75 (m, 1H), 2.81 (dd, *J* = 14.4, 9.6 Hz, 1H), 3.05 (dd, *J* = 14.4, 4.0 Hz, 1H), 4.41 (dd, *J* = 9.6, 4.0 Hz, 1H), 7.10-7.25 (m, 10H); ¹³C NMR (100 Hz, CDCl₃): δ 22.1, 22.3 (d, *J*_{C-F} = 24.0 Hz), 28.0, 29.4 (d, *J*_{C-F} = 4.2 Hz), 35.1, 38.8 (d, *J*_{C-F} = 22.4 Hz), 65.4, 82.7, 97.3 (d, *J*_{C-F} = 185.1 Hz), 126.0, 126.9, 128.4,128.4, 128.6, 129.1, 136.5, 140.9, 151.0, 172.2 (d, *J*_{C-F} = 26.7 Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -149.0 (m, 1F); HRMS: [MH]⁺ Calcd. for C₂₃H₂₇NO₃F 384.1975; found: 384.2010.

(S)-4-benzyl-3-((S)-2-butyl-2-fluorooctanoyl)-5,5-dimethyloxazolidin-2-one (2gr)

Purification was performed with hexane/ethyl acetate = 20/1 to provide $2g_f$ as colorless oil, yield 69%, dr 87:13. ¹H NMR (400 MHz, CDCl₃): δ 0.75-0.87 (m, 6H), 1.06-1.33 (m, 16 H), 1.34-1.46 (m, 2H), 1.80-1.95 (m, 2H), 2.11-2.35 (m, 2H), 2.83 (dd, J = 14.4, 9.6 Hz, 1H), 3.13 (dd, J = 14.4, 4.0 Hz, 1H), 4.48 (dd, J = 9.6, 4.0 Hz, 1H), 7.15-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 13.9, 14.0, 22.2, 22.5, 22.7, 23.5 (d, $J_{C-F} = 3.7$ Hz), 25.3 (d, $J_{C-F} = 3.5$ Hz), 28.1, 29.2, 31.6, 35.2, 35.3 (d, $J_{C-F} = 21.9$ Hz), 35.3 (d, $J_{C-F} = 26.7$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -153.9 (m, 1F); HRMS: [MH]⁺ Calcd. for C₂₄H₃₇NO₃F 406.2757; found: 406.2764.

(S)-4-benzyl-3-((S)-2-fluoro-2-isopropyloctanoyl)-5,5-dimethyloxazolidin-2-one (2gg)

Purification was performed with hexane/ethyl acetate = 20/1 to provide $2g_g$ as colorless oil, yield 61%, dr 71:29. ¹H NMR (400 MHz, CDCl₃): δ 0.79 (t, J = 6.8 Hz, 3H), 0.83-0.95 (m, 6H), 0.98-1.10 (m, 1H), 1.15-1.29 (m, 12H), 1.32-1.45 (m, 1H), 1.76-1.95 (m, 1H), 2.15-2.45 (m, 1H), 2.52-2.76 (m, 1H), 2.82 (dd, J = 14.4, 9.6 Hz, 1H), 3.13-3.18 (m, 1H), 4.45-4.49 (m, 1H), 7.23-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 14.0 (13.9), 15.9 (d, $J_{C-F} = 4.2$ Hz) (15.8), 17.1 (d, $J_{C-F} = 4.6$ Hz), 22.2 (22.3), 22.5 (22.4), 23.5 (d, $J_{C-F} = 3.5$ Hz) (23.9), 28.0 (28.2), 29.3 (29.3), 31.5 (31.9), 31.7 (31.8), 32.7 (d, $J_{C-F} = 22.7$ Hz) (32.8), 35.1, 65.8 (65.6), 82.3 (82.3), 102.9 (d, $J_{C-F} = 189.3$ Hz), 126.8, 128.7, 129.0 (129.0), 136.8 (136.8), 151.0 (151.0), 172.0 (d, $J_{C-F} = 26.9$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -167.5 (m, 1F, major diastereomer), -167.9 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₂₃H₃₅NO₃F 392.2601; found: 392.2696.

(S)-4-benzyl-3-((R)-2-cyclopropyl-2-fluoropropanoyl)-5,5-dimethyloxazolidin-2-one (2gh)

Purification was performed with hexane/ethyl acetate = 20/1 to provide $2g_h$ as colorless oil, yield 70%, dr 86:14. ¹H NMR (400 MHz, CDCl₃): δ 0.34-0.55 (m, 4H), 1.30 (s, 3H), 1.33 (s, 3H), 1.66 (d, *J* = 25.6 Hz, 3H), 1.75-1.90 (m, 1H), 2.88 (dd, *J* = 14.4, 9.6 Hz, 1H), 3.08 (dd, *J* = 14.4, 4.0 Hz, 1H), 4.46 (dd, *J* = 9.6, 4.0 Hz, 1H), 7.15-7.24 (m, 5H); ¹³C NMR (100 Hz, CDCl₃): δ 0.8 (d, *J*_{C-F} = 3.8 Hz), 1.1 (d, *J*_{C-F} = 6.2 Hz), 16.0 (d, *J*_{C-F} = 22.2 Hz), 21.8 (d, *J*_{C-F} = 24.6 Hz), 22.1, 28.1, 35.1, 65.4, 82.6, 95.4 (d, *J*_{C-F} = 185.0 Hz), 126.9, 128.7, 129.1, 136.6, 151.1, 172.5 (d, *J*_{C-F} = 28.0 Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -161.1 (m, 1F, major diastereomer), -159.3 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₁₈H₂₃NO₃F 320.1656; found: 320.1655

(S)-4-benzyl-3-((R)-2-fluoro-2-phenylpropanoyl)-5,5-dimethyloxazolidin-2-one (2gi)

Purification was performed with hexane/ethyl acetate = 12/1 to provide $2g_i$ as colorless oil, yield 83%, dr 97:3. ¹H NMR (400 MHz, CDCl₃): δ 1.17 (s, 3H), 1.29 (s, 3H), 1.80 (d, *J* = 22.4 Hz, 3H), 2.78 (dd, *J* = 14.4, 9.6 Hz, 1H), 3.06 (dd, *J* = 14.4, 4.0 Hz, 1H), 4.50 (dd, *J* = 9.6, 4.0 Hz, 1H), 7.15-7.35 (m, 10 H); ¹³C NMR (100 MHz, CDCl₃): δ 22.1, 26.6 (d, *J*_{C-F} = 25.4 Hz), 28.1, 35.1, 64.6, 82.2, 97.1 (d, *J*_{C-F} = 188.2 Hz), 124.4 (d, *J*_{C-F} = 6.8 Hz), 126.9, 128.2, 128.3 (d, *J*_{C-F} = 1.1 Hz), 128.7, 129.2, 136.4, 138.4 (d, *J*_{C-F} = 21.2 Hz), 149.8, 171.3 (d, *J*_{C-F} = 28.0 Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -146.0 (m, 1F, major diastereomer), -142.1 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₂₁H₂₃NO₃F 356.1662; found: 356.1650.

(S)-4-benzyl-3-((R)-2-fluoro-2-phenylbutanoyl)-5,5-dimethyloxazolidin-2-one (2gj)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $2g_j$ as colorless oil, yield 85%, dr 96:4. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 9.6 Hz, 3H), 1.15 (s, 3H), 1.36 (s, 3H), 2.10-2.25 (m, 1H), 2.35-2.52 (m, 1H), 2.78 (dd, J = 14.4, 9.6 Hz, 1H), 3.21 (dd, J = 14.4, 4.0 Hz, 1H), 4.57 (dd, J = 9.6, 4.0 Hz, 1H), 7.25-7.35 (m, 10H); ¹³C NMR (100 Hz, CDCl₃): δ 7.5 (d, $J_{C-F} = 3.6$ Hz), 22.2, 27.9, 33.3 (d, $J_{C-F} = 19.2$ Hz), 34.7, 64.7, 82.1, 99.4 (d, $J_{C-F} = 154.9$ Hz), 124.7, 124.8, 126.9, 128.0, 128.7, 129.1, 136.3, 136.9 (d, $J_{C-F} = 17.1$ Hz), 150.0, 171.8 (d, $J_{C-F} = 22.8$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -163.8 (m, 1F, major diastereomer), -162.2 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₂₂H₂₅NO₃F 370.1813; found: 370.1758.

(S)-4-benzyl-3-((R)-2-fluoro-2-phenylhexanoyl)-5,5-dimethyloxazolidin-2-one (2gk)

Purification was performed with hexane/ethyl acetate = 15/1 to provide $2g_k$ as colorless oil, yield 85%, dr 95:5. ¹H NMR (400 MHz, CDCl₃): δ 0.88 (t, J = 9.6 Hz, 3H), 1.18 (s, 3H), 1.28-1.32 (m, 4H), 1.39 (s, 3H), 2.08-2.21 (m, 1H), 2.25-2.50 (m, 1H), 2.81 (dd, J = 14.4, 9.6 Hz, 1H), 3.23 (dd, J = 14.4, 4.0 Hz, 1H), 4.59 (dd, J = 9.6, 4.0 Hz, 1H), 7.24-7.48 (m, 10H); ¹³C NMR (100 Hz, CDCl₃): δ 13.8, 22.2, 22.6, 25.1 (d, $J_{C-F} = 2.6$ Hz), 27.9, 34.7, 39.9 (d, $J_{C-F} = 18.7$ Hz), 64.7, 82.2, 99.2 (d, $J_{C-F} = 154.5$ Hz), 124.7, 124.8, 126.9, 128.0 (d, $J_{C-F} = 5.1$ Hz), 128.7, 129.1, 136.3, 137.2 (d, $J_{C-F} = 17.1$ Hz), 150.0, 171.9 (d, $J_{C-F} = 22.8$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -161.4 (m, 1F, major diastereomer), -159.6 (m, 1F, minor diastereomer); HRMS: [MH]⁺ Calcd. for C₂₄H₂₉NO₃F 398.2126; found: 398.2135

(S)-4-benzyl-3-((R)-2-fluoro-2-methyl-5-(triisopropylsilyloxy)pentanoyl)-5,5-dimethyloxazolidin-2-one (2g)

Purification was performed with hexane/ethyl acetate = 18/1 to provide **2g**₁ as colorless oil, yield 52%, dr 90:10. ¹H NMR (400 MHz, CDCl₃): δ 0.95-1.05 (m, 21H), 1.28 (s, 3H), 1.31 (s, 3H), 1.42-1.55 (m, 1H), 1.58-1.70 (m, 4H), 1.90-2.05 (m, 1H), 2.20-2.37 (m, 1H), 2.84 (dd, *J* = 14.4, 9.6 Hz, 1H), 3.10 (dd, *J* = 14.4, 4.0 Hz, 1H), 3.63 (t, *J* = 6.4 Hz, 2H), 4.42 (dd, *J* = 9.6, 4.0 Hz, 1H), 7.19-7.24 (m, 5H); ¹³C NMR (100 Hz, CDCl₃): δ 11.9, 18.0, 22.2, 22.4 (d, *J*_{C-F} = 24.1 Hz), 26.9 (d, *J*_{C-F} = 3.3 Hz), 28.0, 33.6 (d, *J*_{C-F} = 22.4 Hz), 35.2, 62.9, 65.4, 82.5, 97.7 (d, *J*_{C-F} = 184.6 Hz), 126.9, 128.7, 129.1, 136.6, 150.9, 172.7 (d, *J*_{C-F} = 26.8 Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -148.8 (d, J = 5.4 Hz, 1F, major diastereomer), -148.7 (m, 1F, minor diastereomer); ²⁹Si NMR (80 MHz, CDCl₃): δ 12.5; [MH]⁺ Calcd. for C₂₇H₄₅NO₃FSi 494.3096; found: 494.3079

(R)-5-((S)-4-benzyl-5,5-dimethyl-2-oxooxazolidin-3-yl)-4-fluoro-4-methyl-5-oxopentyl pivalate (2g_m)

Purification was performed with hexane/ethyl acetate = 10/1 to provide $2g_m$ as colorless oil, yield 82%, dr 94:6. ¹H NMR (400 MHz, CDCl₃): δ 1.12 (s, 9H), 1.13 (s, 3H), 1.29 (s, 3H), 1.45-1.77 (s, 5H), 1.85-2.03 (m, 1H), 2.18-2.35 (m, 1H), 2.86 (dd, J = 14.4, 9.6 Hz, 1H), 3.10 (dd, J = 14.4, 4.0 Hz, 1H), 3.99 (t, J = 6.4 Hz, 2H), 4.42 (dd, J = 9.6, 4.0 Hz, 1H), 7.10-7.29 (m, 5H); ¹³C NMR (100 Hz, CDCl₃): δ 22.1, 22.3 (d, $J_{C-F} = 24.0$ Hz), 22.7 (d, $J_{C-F} = 3.8$ Hz), 27.1, 27.9, 33.6 (d, $J_{C-F} = 22.6$ Hz), 35.1, 38.7, 63.7, 65.3, 82.7, 97.3 (d, $J_{C-F} = 185.3$ Hz), 126.9, 128.6, 129.1, 136.5, 150.9, 172.2 (d, $J_{C-F} = 26.6$ Hz), 178.4; ¹⁹F NMR (100 MHz, CDCl₃): δ -149.4 (m, 1F, major diastereomer), -148.5 (m, 1F, minor diastereomer); [MH]⁺ Calcd. for C₂₃H₃₃FNO₅ 422.2343; found: 422.2352.

(R)-5-((S)-4-benzyl-5,5-dimethyl-2-oxooxazolidin-3-yl)-4-fluoro-4-methyl-5-oxopentyl benzoate ($2g_n$)

Purification was performed with hexane/ethyl acetate = 12/1 to provide $2g_n$ as colorless oil, yield 82%, dr 93:7. ¹H NMR (400 MHz, CDCl₃): δ 1.29 (s, 3H), 1.30 (s, 3H), 1.64-1.73 (m, 4H), 1.80-1.95 (m, 1H), 1.95-2.10 (m, 1H), 2.30-2.45 (m, 1H), 2.84 (dd, J = 14.4, 9.6 Hz, 1H), 3.09 (dd, J = 14.4, 4.0 Hz, 1H), 4.20-4.30 (m, 1H), 4.42 (dd, J = 9.6, 4.0 Hz, 1H),7.12-7.22 (m, 5H), 7.32-7.40 (m, 2H), 7.46-7.50 (m, 1H), 7.96-7.99 (m, 2H); ¹³C NMR (100 Hz, CDCl₃): δ 22.1, 22.3 (d, $J_{C-F} = 23.9$ Hz), 22.8 (d, $J_{C-F} = 3.9$ Hz), 27.9, 33.7 (d, $J_{C-F} = 22.5$), 35.1, 64.4, 65.3, 82.7, 97.3 (d, $J_{C-F} = 185.2$ Hz), 126.9, 128.3, 128.6, 129.1, 129.5, 130.2, 132.9, 136.4, 150.9, 166.4, 172.2 (d, $J_{C-F} = 26.6$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -149.5 (m, 1F, major diastereomer), -149.0 (m, 1F, minor diastereomer); [MH]⁺ Calcd. for C₂₅H₂₉FNO₅ 442.2030; found: 422.2048.

5. Derivative of fluorinated product $2g_a$ and $2g_j$

(*R*)-3a was prepared according to the previously published procedure³. To a stirred solution of 2h_a (0.6 mmol, 1.0 equiv, *d.r.* 93:7) in dry diethyl ether (5 ml) at 0 °C was added abs. methanol (3.0 equiv) followed by solid LiBH4 (1.8 mmol, 3.0 equiv). The resulting mixture was stirred at 0 °C for 1 h then was allowed to warm to room temperature and stirred for additional one hour. After completion of the reaction (monitored by TLC on silica gel using 20% diethyl ether in hexane as eluent), the reaction was quenched by slow addition of water. The organic phase was separated and the aqueous phase was extracted with diethyl ether (3x10 ml). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and the residue was purified by column chromatography (solvent gradient 0-10% diethyl ether in hexane) providing (*R*)-3a in 65% yield (53 mg, 0.39 mmol) as a colourless oil.¹H NMR (400 MHz, CDCl₃): δ 0.83-0.87 (m, 3H), 1.12-1.32 (m, 7H), 1.50-1.64 (m, 2H), 1.85-1.98 (m, 1H), 3.42-3.58 (m, 2H); ¹³C NMR (100 Hz, CDCl₃): δ 13.9, 20.7 (d, *J*_{C-F} = 24.3 Hz), 23.1, 25.5 (d, *J*_{C-F} = 6.1 Hz), 35.9 (d, *J*_{C-F} = 22.1 Hz), 68.1 (d, *J*_{C-F} = 23.9 Hz), 97.7 (d, *J*_{C-F} = 165.7 Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -154.7 (m, 1F).

To a stirred solution of $2g_i$ (0.4 mmol, 1.0 equiv, *d.r.* 97:3) in dry diethyl ether (5 ml) at 0 °C was added abs. methanol (3.0 equiv) followed by solid LiBH4 (1.2 mmol, 3.0 equiv). The resulting mixture was stirred at 0 °C for 1 h then was allowed to warm to room temperature and

stirred for additional one hour. After completion of the reaction (monitored by TLC on silica gel using 20% diethyl ether in hexane as eluent), the reaction was quenched by slow addition of water. The organic phase was separated and the aqueous phase was extracted with diethyl ether (3x10)ml). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated under reduced pressure to get the crude product without further purification. Add the crude product to a dry flask containing solution of Et₃N (5 eq), DMAP (0.1 eq) in DCM (5 ml), followed by adding 4-bromo-2-nitrobenzoyl chloride (1.5 eq). After completion of the reaction (monitored by TLC on silica gel using 20% diethyl ether in hexane as eluent), the reaction was quenched by slow addition of water. The organic phase was separated and the aqueous phase was extracted with DCM (3x10 ml). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and the residue was purified by column chromatography (solvent gradient 0-30% diethyl ether in hexane) providing (R)-4 in 65% yield as white solid. The produt was recrystallized in pentane/ethyl acetate and affoeded colorless needles. ¹H NMR (400 MHz, CDCl₃): δ 1.73 (d, J = 22.4 Hz, 3H), 4.42-4.65 (m, 2H), 7.30-7.42 (m, 5H), 7.50 (d, J = 8.0 Hz, 1H), 7.76 (dd, J = 8.0, 2.0 Hz, 1H), 7.99 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 Hz, CDCl₃): δ 23.5 (d, $J_{C-F} = 24.5$ Hz), 71.0 (d, $J_{C-F} = 24.9$ Hz), 95.2 (d, $J_{C-F} = 175.9$ Hz), 124.4 (d, $J_{C-F} = 9.1$ Hz), 125.4, 126.0, 127.0, 128.2 (d, $J_{C-F} = 1.0$ Hz), 128.5 (d, $J_{C-F} = 1.3$ Hz), 131.3, 135.8, 140.5 (d, $J_{C-F} = 21.4$ Hz), 148.8, 163.9; ¹⁹F NMR (100 MHz, CDCl₃): δ -153.5 (m, 1F);

6. Screening for asymmetric catalytic formation of fluorinated acyclic quaternary carbon center

	В	

С

Α

Entry	Хр	F^{+}	catalyst	Solvent	T(°C)	Yield(%)	Ee(%)
1	А	selectfluor	quinine	toluene	rt	48	0
2	А	NFSI	quinine	toluene	rt	58	15
3	А	NFSI	quinine	CH ₃ CN	rt	50	25
4	Α	NFSI	-	CH ₃ CN	rt	trace	-
5	А	NFSI	(DHQ) ₂ PHAL	CH ₃ CN	-40°C to rt	80	37
6	Α	NFSI	(DHQ) ₂ AQN	CH ₃ CN	-40°C to rt	65	25
7	В	NFSI	(DHQ) ₂ PHAL	CH ₃ CN	-40°C to rt	75	60
8	В	NFSI	(DHQ) ₂ AQN	CH ₃ CN	-40°C to rt	77	46
9	В	NFSI	(DHQ) ₂ Pyr	CH ₃ CN	-40°C to rt	74	31
10	В	NFSI	(DHQD) ₂ PHAL	CH ₃ CN	-40°C to rt	75	23
11	В	NFSI	(DHQ) ₂ PHAL	CH ₃ (CH ₂) ₂ CN	-40°C to rt	trace	-
12	В	NFSI	(DHQ) ₂ PHAL	hexane	-40°C to rt	trace	-
13	С	NFSI	(DHQ) ₂ PHAL	hexane	-40°C to rt	80	58

General procedure⁴: catalyst (20 mol%) and "F" source (1.2 equiv) in solvent (1.0 ml) were stirred under nitrogen atmosphere at room temperature for 30 min. K_2CO_3 (6.0 equiv) was then

added to the solution, and the reaction mixture was stirred for 30 min at -40 °C. A solution of silyl enol ether (0.1 mmol) in solvent (1.0 ml) was added to the catalyst solution. The reaction was stirred at the temperature for 1 to 4 days while monitoring by TLC. The reaction was stopped by addition of aqueous solution of 1N HCl. The reaction mixture was then diluted with AcOEt, washed with saturated aqueous sodium bicarbonate solution, brine, dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was purified by column chromatography on silica gel eluting with Hexane/AcOE = 20/1. The ee of the product was determined by chiral HPLC.

methyl benzyl(2-fluoro-2-methyloctanoyl)carbamate $(2g_0)$

colorless oil (82%),¹H NMR (400 MHz, CDCl₃): δ 0.86 (t, J = 7.2 Hz, 3H), 0.92-1.05 (m, 1H), 1.10-1.35 (m, 7H), 1.60 (d, J = 20.8 Hz, 3H), 1.68-1.82 (m, 1H), 1.92-2.08 (m, 1H), 3.78 (s, 3H), 4.79 (s, 2H), 7.20-7.40 (m, 5H); ¹³C NMR (100 Hz, CDCl₃): δ 14.0, 22.4, 22.8 (d, $J_{C-F} = 3.5$ Hz), 24.1 (d, $J_{C-F} = 23.0$ Hz), 29.1, 31.5, 40.1 (d, $J_{C-F} = 22.5$ Hz), 50.0, 53.9, 99.2 (d, $J_{C-F} = 190.4$ Hz), 127.6, 128.2, 128.4, 136.8, 155.9, 177.5 (d, $J_{C-F} = 24.8$ Hz); ¹⁹F NMR (100 MHz, CDCl₃): δ -155.5 (m, 1F); HPLC: (AD-H, Hexane/ *i*PrOH=99/1, 1.0 ml/ min, 254 nm) tR (minor-isomer)=5.68 min, tR(major-isomer)=5.91 min (59% ee)

7. References

A. T. Herrmann, L. L. Smith, A. Zakarian, J. Am. Chem. Soc., 2012, 134, 6976.
 (a)Y. Minko, M. Pasco, L. Lercher, M. Botoshansky, I. Marek, Nature, 2012, 490, 522; (b)

M. O. Frederick, J. A. Mulder, M. R. Tracey, R. P. Hsung, J. Huang, K. C. Kurtz, L. Shen, C. J. Douglas, J. Am. Chem, Soc. 2003, 125, 2368.

3. M. Körner, M. Hiersemann, Org. Lett. 2007, 9, 4979.

4. T. Ishimaru, N. Shibata, T, Horikawa, N. Yasuda, S. Nakamura, T. Toru, M. Shiro, *Angew. Chem. Int. Ed.*, 2008, *47*, 4157.

8. X-ray crystallographic analysis data

Crystallographic data for the title structure (R)-4 have been deposited with the Cambridge Crystallographic Data Centre, accession number CCDC 1574441.

Table 1. Crystal data and structure refinement for Marek135.

Identification code	Marek135 (Jian Qiang Huang)
Empirical formula	C16 H13 Br F N O4

Formula weight	382.18			
Temperature	293(2) K			
Wavelength	0.71073 A			
Crystal system, space group	Orthorhombic, P 21 21 2			
Unit cell dimensions	a = 29.8490(2) A alpha = 90 deg.			
	b = 7.0020(2) A beta = 90 deg.			
	c = 7.6880(8) A gamma = 90 deg.			
Volume	1606.81(17) A^3			
Z, Calculated density	4, 1.580 Mg/m^3			
Absorption coefficient	2.587 mm^-1			
F(000)	768			
Crystal size	0.33 x 0.24 x 0.18 mm			
Theta range for data collection	1.36 to 24.38 deg.			
Limiting indices	0<=h<=34, 0<=k<=8, 0<=l<=8			
Reflections collected / unique	1551 / 1551 [R(int) = 0.0720]			
Completeness to theta $= 24.38$	98.9 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.6531 and 0.4623			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	1551 / 0 / 129			
Goodness-of-fit on F^2	1.122			
Final R indices [I>2sigma(I)]	R1 = 0.0485, wR2 = 0.1317			
R indices (all data)	R1 = 0.0580, wR2 = 0.1449			
Absolute structure parameter	0.00			
Largest diff. peak and hole	1.249 and -0.792 e.A^-3			

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for shelxl.
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
Br(1)	4461(1)	2238(1)	7151(1)	60(1)
F(1)	6147(1)	8037(7)	396(5)	54(1)
O(1)	6230(2)	3545(12)	5714(8)	78(2)
O(2)	6311(2)	1486(10)	3692(9)	70(2)
O(3)	5721(2)	2222(9)	-430(6)	58(1)
O(4)	6045(2)	4340(8)	1346(6)	54(1)
N(1)	6083(2)	2554(10)	4562(7)	45(2)

C(1)	4861(2)	2396(10)	5260(9)	41(2)
C(2)	4696(2)	2360(10)	3580(10)	48(2)
C(3)	4993(2)	2476(10)	2184(8)	45(2)
C(4)	5450(2)	2627(9)	2468(8)	37(1)
C(5)	5598(2)	2598(10)	4193(8)	36(1)
C(6)	5314(2)	2511(10)	5588(8)	41(2)
C(7)	5754(2)	2975(11)	965(9)	41(2)
C(8)	6367(2)	4861(12)	40(8)	49(2)
C(9)	6529(2)	6845(10)	480(9)	39(2)
C(10)	6709(2)	7068(11)	2329(8)	46(2)
C(11)	6861(2)	7486(11)	-898(8)	40(2)
C(12)	6765(3)	9000(11)	-2011(9)	51(2)
C(13)	7060(3)	9500(14)	-3308(10)	59(2)
C(14)	7450(3)	8502(15)	-3524(11)	63(2)
C(15)	7559(3)	7073(13)	-2411(11)	60(2)
C(16)	7270(3)	6534(11)	-1109(11)	51(2)

Table 3.Bond lengths [A] and angles [deg] for shelxl.

Br(1)-C(1)	1.884(6)
F(1)-C(9)	1.415(8)
O(1)-N(1)	1.208(8)
O(2)-N(1)	1.213(8)
O(3)-C(7)	1.199(9)
O(4)-C(7)	1.324(8)
O(4)-C(8)	1.439(8)
N(1)-C(5)	1.474(8)
C(1)-C(6)	1.377(9)
C(1)-C(2)	1.383(10)
C(2)-C(3)	1.394(10)
C(2)-H(2)	0.9300
C(3)-C(4)	1.387(10)
C(3)-H(3)	0.9300
C(4)-C(5)	1.398(9)
C(4)-C(7)	1.488(9)
C(5)-C(6)	1.369(9)
C(6)-H(6)	0.9300
C(8)-C(9)	1.509(11)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(11)	1.518(9)

C(9)-C(10)	1.528(9)
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
С(10)-Н(10С)	0.9600
C(11)-C(12)	1.392(10)
C(11)-C(16)	1.402(10)
C(12)-C(13)	1.375(11)
C(12)-H(12)	0.9300
C(13)-C(14)	1.369(13)
C(13)-H(13)	0.9300
C(14)-C(15)	1.355(13)
C(14)-H(14)	0.9300
C(15)-C(16)	1.373(11)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(7)-O(4)-C(8)	117.9(5)
O(1)-N(1)-O(2)	123.6(6)
O(1)-N(1)-C(5)	119.1(6)
O(2)-N(1)-C(5)	117.3(6)
C(6)-C(1)-C(2)	121.5(6)
C(6)-C(1)-Br(1)	118.9(5)
C(2)-C(1)-Br(1)	119.6(5)
C(1)-C(2)-C(3)	119.4(6)
C(1)-C(2)-H(2)	120.3
C(3)-C(2)-H(2)	120.3
C(4)-C(3)-C(2)	120.7(6)
C(4)-C(3)-H(3)	119.7
C(2)-C(3)-H(3)	119.7
C(3)-C(4)-C(5)	117.3(6)
C(3)-C(4)-C(7)	119.3(6)
C(5)-C(4)-C(7)	123.2(6)
C(6)-C(5)-C(4)	123.3(6)
C(6)-C(5)-N(1)	117.1(5)
C(4)-C(5)-N(1)	119.5(5)
C(5)-C(6)-C(1)	117.8(6)
C(5)-C(6)-H(6)	121.1
C(1)-C(6)-H(6)	121.1
O(3)-C(7)-O(4)	124.7(7)
O(3)-C(7)-C(4)	124.9(6)
O(4)-C(7)-C(4)	110.2(6)
O(4)-C(8)-C(9)	106.9(6)
O(4)-C(8)-H(8A)	110.3
C(9)-C(8)-H(8A)	110.3

O(4)-C(8)-H(8B)	110.3
C(9)-C(8)-H(8B)	110.3
H(8A)-C(8)-H(8B)	108.6
F(1)-C(9)-C(8)	106.0(6)
F(1)-C(9)-C(11)	108.7(6)
C(8)-C(9)-C(11)	108.9(6)
F(1)-C(9)-C(10)	105.5(5)
C(8)-C(9)-C(10)	114.5(6)
C(11)-C(9)-C(10)	112.9(6)
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(16)	118.0(6)
C(12)-C(11)-C(9)	121.3(6)
C(16)-C(11)-C(9)	120.6(6)
C(13)-C(12)-C(11)	120.5(8)
C(13)-C(12)-H(12)	119.7
C(11)-C(12)-H(12)	119.7
C(14)-C(13)-C(12)	120.2(8)
C(14)-C(13)-H(13)	119.9
C(12)-C(13)-H(13)	119.9
C(15)-C(14)-C(13)	120.3(7)
C(15)-C(14)-H(14)	119.9
C(13)-C(14)-H(14)	119.9
C(14)-C(15)-C(16)	120.8(8)
C(14)-C(15)-H(15)	119.6
C(16)-C(15)-H(15)	119.6
C(15)-C(16)-C(11)	120.1(8)
C(15)-C(16)-H(16)	120.0
C(11)-C(16)-H(16)	120.0

Table 4. Anisotropic displacement parameters (A² x 10³) for shelxl.
The anisotropic displacement factor exponent takes the form:
-2 pi² [h² a^{*} U11 + ... + 2 h k a^{*} b^{*} U12]

U11	U22	U33	U23	U13	U12

Br(1)	54(1)	64(1)	63(1)	0(1)	26(1)	2(1)
F(1)	40(2)	70(3)	50(2)	6(2)	2(2)	11(2)
O(1)	59(3)	125(6)	49(3)	-32(4)	-7(3)	-19(4)
O(2)	43(3)	92(5)	74(4)	-22(4)	2(3)	17(3)
O(3)	73(3)	63(4)	37(3)	-8(3)	6(2)	-19(3)
O(4)	70(3)	63(3)	28(2)	-11(3)	15(2)	-26(3)
N(1)	41(3)	63(4)	32(3)	-5(3)	2(2)	0(3)
C(1)	40(3)	37(4)	46(3)	-3(4)	13(3)	4(3)
C(2)	39(3)	42(4)	63(4)	3(4)	3(3)	-1(3)
C(3)	49(4)	47(4)	39(3)	8(4)	-6(3)	0(3)
C(4)	48(3)	30(3)	31(3)	2(3)	0(3)	-2(3)
C(5)	34(3)	37(3)	38(3)	-6(3)	-1(2)	2(3)
C(6)	52(4)	36(4)	35(3)	-4(3)	2(3)	0(3)
C(7)	46(4)	42(4)	35(4)	-1(3)	-3(3)	-7(3)
C(8)	55(5)	56(4)	36(4)	-7(4)	15(3)	-19(4)
C(9)	37(3)	43(4)	36(3)	3(3)	2(3)	4(3)
C(10)	47(4)	54(4)	36(3)	1(4)	-6(3)	2(3)
C(11)	37(3)	50(4)	33(3)	4(3)	-4(2)	-6(3)
C(12)	45(4)	56(4)	50(4)	12(4)	-5(3)	-8(3)
C(13)	54(5)	73(5)	51(4)	16(4)	-4(4)	-16(4)
C(14)	65(5)	75(6)	49(4)	-4(5)	15(4)	-32(5)
C(15)	51(4)	60(5)	68(5)	-11(5)	20(4)	-4(4)
C(16)	52(4)	43(4)	60(5)	0(4)	8(4)	5(3)

Table 5.Hydrogen coordinates (x 10^4) and isotropic
displacement parameters (A^2 x 10^3) for shelxl.

	x	У	Z	U(eq)
H(2)	4389	2260	3383	57
H(3)	4883	2452	1052	54
H(6)	5423	2530	6721	49
H(8A)	6230	4846	-1104	59
H(8B)	6616	3970	44	59
H(10A)	6788	8379	2529	68
H(10B)	6970	6279	2471	68
H(10C)	6484	6685	3147	68
H(12)	6499	9678	-1877	61

H(13)	6994	10520	-4040	71
H(14)	7641	8805	-4437	76
H(15)	7832	6451	-2531	72
H(16)	7347	5537	-367	62

9. NMR spectra and HPLC spectra of fluorination products

fl (ppm)

hjq400

Sa Ple No : 303806-	-2			DF-XCha
perator	:=====================================	Location :	20	Cker-soft
Injection Date	: 12/28/2016 8:46:52 AM			
Acq. Method	: DEF_LC.M			
Analysis Method	: C:\Chem32\1\Methods\DEF_LC.M			
Last changed	: 8/31/2017 9:52:09 AM by SYSTEM (modified after loading)			
Sample Info	: ad-h 96			

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=250 nm

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	10.053	BV	0.1660	559.56885	51.00288	10.2229
2	10.749	VB	0.1885	4914.08545	402.26038	89.7771

Totals : 5473.65430 453.26326

11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

-0

Data C:\Chem32\	1\Data\JQH\701501-cf15.D		
Sé Ple Nº : 701501-	cf15		
Revenue Perator	: SYSTEM		
		Location :	11
Injection Date	: 2/26/2017 11:29:00 AM		
Acq. Method	: DEF_LC.M		
Analysis Method	: C:\Chem32\1\Methods\DEF_LC.M		
Last changed	: 9/6/2017 1:28:58 PM by SYSTEM		
	(modified after loading)		
Sample Info	: ad-h ql046 add		
	99/1		
	1		

Additional Info : Peak(s) manually integrated

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=250 nm

==

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	5.895	MM	0.1303	703.70343	89.99191	49.2498
2	6.180	MM	0.1390	725.14276	86.97044	50.7502

Totals : 1428.84619 176.96235

Data	$C:\Chem32$,1`	\Data\JQH\701103-5.D			
Sa	fe N: 701103-	· 5			:	
M 41.11	Contractor Perator	:	SYSTEM			
				Location	:	13
	Injection Date	:	1/8/2017 11:09:20 AM			
	Acq. Method	:	DEF_LC.M			
	Analysis Method	:	$C:\DEF_LC.M$			
	Last changed	:	9/6/2017 1:25:10 PM by SYSTEM			
			(modified after loading)			
	Sample Info	:	ad-h			
			99			
			1.0			

Area Percent Report

Sorted By	:	Signal	
Multiplier	:	1.0000	
Dilution	:	1.0000	
Use Multiplier &	Dilution	Factor with	ISTDs

Signal 1: VWD1 A, Wavelength=250 nm

==

Peak Re	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area ۶
1	5.679	MM	0.1104	123.33300	18.62747	20.4516
2	5.914	MM	0.1202	479.71408	66.49714	79.5484
Totals	:			603.04708	85.12461	