Supporting Information

KI-Catalyzed C-S Bond Formation via Oxidation Relay Strategy: an Efficient Access to Various α -Thio- β -Dicarbonyl Compounds

Yi Jiang, ^{†,§} Jiao-xia Zou, ^{†,§} Long-Tao Huang, [†] Xue Peng, [†] Jie-dan Deng, [‡] Long-qing Zhu, [†] Yu-hang Yang, [†] Yi-yue Feng, [†] Xiao-yun Zhang, ^{*†} and Zhen Wang *^{†,‡}

[†]School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China.
[‡]State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

[§]These authors contributed equally.

General Information:

All reactions were carried out in a dry solvent under argon atmosphere unless otherwise noted. NMR spectra were recorded on Bruker 400 MHz (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) spectrometers. Proton chemical shifts are reported relative to a residual solvent peak (CDCl₃ at 7.26 ppm). Carbon chemical shifts are reported relative to a residual solvent peak (CDCl₃ at 77.2 ppm,). The following abbreviations were used to designate multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet, br = broad. High-resolution mass spectra (HRMS) were measured on a Brucker Daltonics Apex II 47e Specification (for HRMS). Substrates were purchased from commercial sources and used as received. Substrates **1a-1n**, **2a-2e**, **2g**, **2j**, **2l**, **2m**, **8** are commercially available. Substrates **2f**,^[1] **2h**,^[2] **2i**,^[2] **2k**^[3] are known compounds.

Optimization of Reaction Conditions.

A test tube equipped with a magnetic stir bar was charged with thiophenol **1a** (0.10 mmol, 1.0 eq), dimethyl malonate **2a** (0.15 mmol, 1.5 eq), catalyst (10 mol%), base (0.15 mmol, 1.5 eq) and solvent (1 mL) under oxygen atmosphere. The resulting mixture was stirred under indicated temperature for 18 h, then the reaction solution was cooled to ambient temperature. The reaction was quenched by saturated NaHCO₃ aqueous solution, and extracted with ethyl acetate (3*25mL), the combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20:1) to give **3aa** as colorless oil.

	SH + O		Cat., Base Sol., O ₂ , x h, T °C	S O	o~ ,
1	а	2a		° 3aa	
Entry	Base	Catalyst (mol %)	Solvent	(°C)	Yield (%)
1	K ₃ PO ₄	/	DMSO	110	<10
2	K ₃ PO ₄	/	DMF	110	N.R.
3	K ₃ PO ₄	/	<i>n</i> -PrCN	110	27
4	K ₃ PO ₄	/	CH ₃ CN	80	28
5	K ₃ PO ₄	/	CH ₃ CN	50	13
6	DBU	/	CH ₃ CN	80	<5
7	DMAP	/	CH ₃ CN	80	N.R.
8	NaOH	/	CH ₃ CN	80	46
9 ^b	NaOH	/	CH ₃ CN	80	42
10 ^c	NaOH	/	CH ₃ CN	80	49
11 ^d	NaOH	/	CH ₃ CN	80	48
12 ^e	NaOH	/	CH ₃ CN	80	62
13 ^{e,f}	NaOH	/	CH ₃ CN	80	55
14 ^e	NaOH	KI (10)	CH ₃ CN	80	89
15 ^e	NaOH	KBr (10)	CH ₃ CN	80	<10
16 ^e	NaOH	CuI (10)	CH ₃ CN	80	N.R.
17 ^{e,g}	NaOH	KI (10)	CH ₃ CN	80	24
18 ^{e,h}	NaOH	KI (10)	CH ₃ CN	80	N.R.

 Table S1. Optimization of reaction conditions^a.

^aReaction conditions: **1a** (0.10 mmol, 1 eq), **2a** (0.15 mmol, 1.5eq), Base (0.15 mmol, 1.5 eq), Solvent (1 ml), O₂ (1 atm), 18h. ^bNaOH was used as 2.0 eq. ^cThe reaction time was 24 h. ^dThe reaction time was 30 h. ^e**2a** was used as 2.0 eq. ^fThe mixture concentration was 0.2 mmol/mL. ^gAir atmosphere. ^hAr atmosphere. N.R.=no result, *n*-PrCN=Butyronitrile.

Typical procedure for thiophenol 1a sulfuration of dimethyl malonate 2a:

A test tube equipped with a magnetic stir bar was charged with thiophenol **1a** (0.10 mmol), dimethyl malonate **2a** (0.15 mmol), KI (10 mol%), NaOH (0.15 mmol) and CH₃CN (1 mL) under O₂ atmosphere. The resulting mixture was stirred at 80 °C for 18 h, then quenched by saturated NaHCO₃ aqueous solution, and extracted with ethyl acetate (3*25mL), the combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20 : 1) to give **3aa** as colorless oil.

dimethyl 2-(phenylthio)malonate (3aa):

21.4 mg, 89%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.35 – 7.31 (m, 3H), 4.55 (s, 1H), 3.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 133.6, 132.2, 129.4, 129.0, 55.5, 53.5; IR (KBr, v / cm⁻¹) 3423, 2976 1740, 1258, 1150, 723, 669; HRMS (ESI⁺) Calcd for C₁₁H₁₂O₄S (M+Na⁺) 263.0349, Found 263.0351.

dimethyl 2-(p-tolylthio)malonate (3ba):

21.8 mg, 86%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 4.50 (s, 1H), 3.75 (s, 6H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 139.5, 134.2, 130.2, 128.4, 55.8, 53.4, 21.4; IR (KBr, v / cm⁻¹) 2956, 1739, 1295, 1262, 1146, 1019, 813; HRMS (ESI⁺) Calcd for C₁₂H₁₄O₄S (M+Na⁺) 277.0505, Found 277.0497.

dimethyl 2-((4-(tert-butyl)phenyl)thio)malonate (3ca):

25.8 mg, 87%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.5 Hz, 2H), 4.50 (s, 1H), 3.75 (s, 6H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃)

 δ 167.1, 152.5, 133.7, 128.6, 126.5, 55.7, 53.4, 34.9, 31.4; IR (KBr, v/cm⁻¹) 2961, 1761, 1269, 1491, 1437, 1150, 1016, 835; HRMS (ESI⁺) Calcd for C₁₅H₂₀O₄S (M+Na⁺)

dimethyl 2-((4-methoxyphenyl)thio)malonate (3da):

24.6 mg, 91%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.8 Hz, 2H), 6.85 (d, *J* = 8.8 Hz, 2H), 4.41 (s, 1H), 3.80 (s, 3H), 3.74 (s, 6H); ¹³C NMR (100 MHz, CDCl₃)

δ 167.1, 160.9, 136.9, 122.1, 114.9, 56.2, 55.5, 53.3; IR (KBr, v / cm⁻¹) 2956, 2817, 1580, 1213, 729; HRMS (ESI⁺) Calcd for C₁₂H₁₄O₅S (M+Na⁺) 293.0454, Found 293.0451.

dimethyl 2-((4-fluorophenyl)thio)malonate (3ea):

23.2 mg, 90%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 4.50 (s, 1H), 3.76 (s, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 164.9, 162.4, 136.9, 136.8, 126.9, 116.7, 116.4, 55.8, 53.5; IR (KBr, v / cm⁻¹) 2961, 2920, 1737, 1491, 1262, 1025, 800, 669; HRMS (ESI⁺) Calcd for C₁₁H₁₁FO₄S (M+Na⁺) 281.0254, Found 281.0260.

dimethyl 2-((4-chlorophenyl)thio)malonate (3fa):

23.8 mg, 87%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 4.50 (s, 1H), 3.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 135.5, ^{Cl²}

135.2, 130.5, 129.6, 55.4, 53.5; IR (KBr, v / cm^{-1}) 2956, 1739, 1478, 1437, 1264, 1150, 1096, 822; HRMS (ESI⁺) Calcd for C₁₁H₁₁ClO₄S (M+Na⁺) 296.9959, Found 296.9960.

dimethyl 2-((4-bromophenyl)thio)malonate (3ga):

27.0 mg, 85%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ

7.46 (d, *J* = 8.5 Hz, 2H), 7.40 (d, *J* = 8.3 Hz, 2H), 4.50 (s, 1H), 3.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 135.2, Br O

132.5, 131.2, 123.6, 55.2, 53.6; IR (KBr, v / cm⁻¹) 2958, 1759, 1478, 1437, 1305, 1262,

dimethyl 2-(m-tolylthio)malonate (3ha):

20.6 mg, 81%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 12.5 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 4.54 (s, 1H), 3.76 (s, 6H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 139.3, 134.0, 132.0, 130.4, 129.8, 129.2, 55.6, 53.5, 21.4; IR (KBr, v / cm⁻¹) 2956, 1739, 1437, 1265, 1150, 1023, 783, 693; HRMS (ESI⁺) Calcd for C₁₂H₁₄O₄S (M+Na⁺) 277.0505, Found 277.0505.

dimethyl 2-((3-bromophenyl)thio)malonate (3ia):

27.0 mg, 85%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (t, *J* = 1.6 Hz, 1H), 7.46 (dd, *J* = 7.8, 1.5 Hz, 2H), 7.20 (t, *J* = 7.9 Hz, 1H), 4.54 (s, 1H), 3.77 (s, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 135.8, 134.4, 132.0, 131.8, 130.7, 122.9, 55.2, 53.6; IR (KBr, v / cm⁻¹) 2958, 1757, 1432, 1314, 1262, 1170, 799; HRMS (ESI⁺) Calcd for C₁₁H₁₁BrO₄S (M+Na⁺) 340.9454, Found 340.9456.

dimethyl 2-(o-tolylthio)malonate (3ja):

18.3 mg, 72%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 1H), 7.23 (d, J = 4.0 Hz, 2H), 7.19 – 7.14 (m, 1H), 4.49 (s, 1H), 3.75 (s, 6H), 2.48 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 166.8, 141.1, 134.1, 131.3, 130.7, 129.0, 126.8, 54.6, 53.3, 20.7; IR (KBr, v / cm⁻¹) 2952, 1740, 1436, 1228, 1151, 1029, 763, 689; HRMS (ESI⁺) Calcd for C₁₂H₁₄O₄S (M+Na⁺) 277.0505, Found 277.0502.

dimethyl 2-((2-chlorophenyl)thio)malonate (3ka): 20.3 mg, 74%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 7.5, 1.7 Hz, 1H), 7.44 (dd, J = 7.7, 1.4 Hz, 1H), 7.28 (d, J

= 1.7 Hz, 1H), 7.24 (d, J = 1.4 Hz, 1H), 4.70 (s, 1H), 3.76 (s, 6H); ¹³C NMR (100 MHz,

CDCl₃) δ 166.6, 137.7, 135.0, 131.2, 130.4, 130.2, 127.6, 53.7, 53.6; IR (KBr, v / cm⁻¹) 2958, 1750 1468, 1263, 1158, 1121, 819; HRMS (ESI⁺) Calcd for C₁₁H₁₁ClO₄S (M+Na⁺) 296.9959, Found 296.9960.

dimethyl 2-((2,6-dimethylphenyl)thio)malonate (3la):

16.9 mg, 63%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.14 (m, 1H), 7.11 (d, J = 6.7 Hz, 2H), 4.27 (s, 1H), 3.72 (s, 6H), 2.53 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 144.0, 130.4, 129.8, \sim 128.6, 54.1, 53.3, 21.9; IR (KBr, v / cm⁻¹) 2958, 1741, 1437, 1271,

1153, 1016, 779; HRMS (ESI⁺) Calcd for $C_{13}H_{16}O_4S$ (M+Na⁺) 291.0662, Found 291.0660.

methyl 3,4-dihydro-2H-benzo[b][1,4]thiazine-2-carboxylate (3ma):

17.7 mg, 76%, white powder; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.22 (dd, *J* = 11.0, 4.4 Hz, 1H), 7.05 (td, *J* = 7.7, 1.1 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 4.26 (s, H

1H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 163.0, 135.9, 128.1, 128.0, 124.5, 124.1, 117.5, 117.0, 53.6, 45.1; IR (KBr, v / cm⁻¹) 3058, 2920, 1739, 1681, 1482, 1265, 740; HRMS (ESI⁺) Calcd for C₁₀H₉NO₃S (M+Na⁺) 246.0195, Found 246.0199.

dimethyl 2-(thiophen-2-ylthio)malonate (3na):

20.7 mg, 84%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 5.3 Hz, 1H), 7.29 (d, *J* = 3.4 Hz, 1H), 7.05 – 6.98 (m, 1H), 4.43 (s, 1H), 3.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 137.5, 132.4, 129.1, 127.9, 57.4, 53.5; IR (KBr, v / cm⁻¹) 2954, 1737, 1435, 1262, 1150, 708; HRMS (ESI⁺) Calcd for C₉H₁₀O₄S₂ (M+Na⁺) 268.9913, Found 268.9914.

diethyl 2-(phenylthio)malonate (3ab):

22.0 mg, 82%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (dd, J = 6.5, 2.9 Hz, 2H), 7.39 – 7.29 (m, 3H), 4.53 (s, 1H), 4.21 (q, J = 7.1 Hz, 4H), 1.23 (t, J = 7.1 Hz, 6H); ¹³C NMR (100

MHz, CDCl₃) δ 166.6, 133.5, 132.5, 129.3, 128.8, 62.6, 55.8, 14.1; IR (KBr, v / cm⁻¹) 3457, 2984, 1735, 1301, 1150, 1027, 751, 691; HRMS (ESI⁺) Calcd for C₁₃H₁₆O₄S (M+Na⁺) 291.0662, Found 291.0662.

(Z)-methyl 3-hydroxy-2-(phenylthio)but-2-enoate (3ac):

19.3 mg, 86%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 13.80 (s, 1H), 7.25 (t, *J* = 7.7 Hz, 2H), 7.12 (t, *J* = 6.5 Hz, 3H), 3.77 (d, *J* = 11.0 Hz, 4H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

185.4, 173.6, 138.1, 132.7, 129.1, 125.4, 125.3, 91.8, 52.9, 21.1; IR (KBr, v / cm^{-1}) 3448, 2954, 1741, 1441, 1258, 744, 691; HRMS (ESI⁺) Calcd for C₁₁H₁₂O₃S (M+Na⁺) 247.0399, Found 247.0343.

ethyl 2-((4-methoxyphenyl)thio)-2-methyl-3-oxobutanoate (3ad):

21.4 mg, 76%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 3.81 (d, J = 6.4 Hz, 3H), 2.36 (s, 3H),

1.47 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 170.2, 161.3, 138.9, 120.0, 114.7, 65.9, 62.5, 55.5, 26.2, 20.7, 14.2; IR (KBr, v / cm⁻¹) 2984, 2939, 1716, 1593, 1495, 1251, 1098, 1029, 833; HRMS (ESI⁺) Calcd for C₁₄H₁₈O₄S (M+Na⁺) 305.0818, Found 305.0819.

ethyl 2-methyl-3-oxo-2-(pyridin-2-ylthio)butanoate (3ae):

17.5 mg, 69%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.24 (s, 1H), 7.09 – 7.00 (m,

1H), 4.23 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.84 (s, 3H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 156.0, 149.4, 136.6, 135.7, 124.2, 121.0, 65.7, 62.7, 26.3, 22.0, 14.1; IR (KBr, v / cm⁻¹) 3011, 1724. 1559, 1468, 1107, 856; HRMS (ESI⁺)

Calcd for C₁₂H₁₅NO₃S (M+Na⁺) 276.0665, Found 276.0662.

methyl 3-oxo-2-phenyl-2-(phenylthio)butanoate (3af):

18.3 mg, 61%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 6.5, 2.9 Hz, 2H), 7.38 – 7.30 (m, 7H), 7.21 – 7.15 (m, 2H), 3.72 (s, 3H), 1.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8,

137.9, 135.3, 132.7, 129.9, 129.3, 129.1, 128.5, 127.6, 52.1, 22.5; IR (KBr, v / cm⁻¹) 3058, 2955, 1724, 1554, 1197, 730; HRMS (ESI⁺) Calcd for $C_{17}H_{16}O_3S$ (M+Na⁺) 323.0712, Found 323.0716.

3-(phenylthio)pentane-2,4-dione (3ag):

17.7 mg, 85%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.7 Hz, 2H), 7.17 – 7.06 (m, 3H), 2.34 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 198.5, 137.9, 129.4 125.4, 124.9, 101.8, 24.6; IR (KBr, v / cm⁻¹) 3062, 1703, 1582, 1478, 1023, 740, 691; HRMS (ESI⁺) Calcd for C₁₁H₁₂O₂S (M+Na⁺) 231.0450, Found 231.0451.

methyl 3-(dimethylamino)-3-oxo-2-(phenylthio)propanoate (3ah):

20.0 mg, 79%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 6.6, 2.9 Hz, 2H), 7.32 (dd, *J* = 4.9, 1.7 Hz, 3H), 4.77 (s, 1H), 3.77 (s, 3H), 3.02 (s, 3H), 2.96 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃) δ 168.1, 165.4, 133.3, 132.9, 129.3, 128.7, 55.3, 53.4, 38.0, 36.4; IR (KBr, v / cm⁻¹) 2954, 1737, 1655, 1398, 1157, 747; HRMS (ESI⁺) Calcd for C₁₂H₁₅NO₃S (M+Na⁺) 276.0665, Found 276.0660.

methyl 3-(methyl(phenyl)amino)-3-oxo-2-(phenylthio)propanoate (3ai):

25.5 mg, 81%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (t, J = 7.3 Hz, 3H), 7.21 (s, 6H), 7.13 (d, J = 7.8 Hz, 2H), 4.38 (s, 1H), 3.31 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.3, 166.3, 142.9, 133.2, 132.4, 130.2, 129.4, 128.8, 128.4, 127.7, 61.2,

38.2, 27.5; IR (KBr, v / cm⁻¹) 2968, 1742, 1638, 1209, 731; HRMS (ESI⁺) Calcd for $C_{17}H_{17}NO_3S$ (M+Na⁺) 338.0821, Found 338.0822.

N,N-dimethyl-3-oxo-2-(phenylthio)butanamide (3aj):

19.0 mg, 80%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.36 (m, 2H), 7.30 (dd, J = 7.7, 5.9 Hz, 3H), 4.69 (s, 1H), 3.05 (s, 3H), 3.00 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 165.6, 133.3, 132.0, 129.5, 128.3, 77.2, 62.8, 38.0, 36.4, 26.3; IR (KBr, v / cm⁻¹) 2956, 1732, 1641, 1204, 728; HRMS (ESI⁺) Calcd for C₁₂H₁₅NO₂S (M+Na⁺) 260.0716, Found 260.0719.

methyl 3-oxo-2-(phenylthio)-3-(propylamino)propanoate (3ak):

21.4 mg, 80%, white powder; ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.42 (m, 2H), 7.36 – 7.30 (m, 3H), 6.95 (s, 1H), 4.37 (s, 1H), 3.76 (s, 3H), 3.24 – 3.16 (m, 2H), 1.47 (dd, J = 14.6, 7.3Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 164.9, 132.8, 132.1, 129.5, 129.0, 55.0, 53.4, 41.9, 22.7, 11.4; IR (KBr, v / cm⁻¹) 3299, 2963, 1739, 1659, 1441, 1262, 1156, 746, 691; HRMS (ESI⁺) Calcd for C₁₃H₁₇NO₃S (M+Na⁺) 290.0821, Found 290.0824.

N1,N3-diethyl-2-(phenylthio)malonamide (3al):

18.4 mg, 69%, white powder; ¹H NMR (400 MHz, CDCl₃) δ 7.44 - 7.36 (m, 2H), 7.30 (dd, J = 9.8, 4.9 Hz, 3H), 7.03 (s, 2H), 4.35 (s, 1H), 3.32 - 3.19 (m, 4H), 1.08 (t, J = 7.3 Hz, 6H); ¹³C

NMR (100 MHz, CDCl₃) δ 166.8, 133.9, 132.9, 132.0, 129.4, 129.0, 128.3, 57.3, 57.3, 35.1, 14.5; IR (KBr, v / cm⁻¹) 3310, 3347, 1649, 1524, 1441, 751; HRMS (ESI⁺) Calcd for C₁₃H₁₈N₂O₂S (M+Na⁺) 289.0981, Found 289.0974.

2-(phenylthio)malonamide (3am):

15.1 mg, 72%, white powder; ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.33 (dd, J = 5.0, 1.9 Hz, 3H), 6.36 (s, 1H), 5.42 (s, 1H), 4.83 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 132.9, 132.6, 129.5, 128.8, 58.2; IR (KBr, v/cm⁻¹) 3362, 1657, 1493, 1271, 740; HRMS (ESI⁺) Calcd for C₉H₁₀N₂O₂S (M+Na⁺) 233.0355, Found 233.0357.

dimethyl 2-methyl-2-(phenylthio)malonate (4):

23.9 mg, 94%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 2H), 7.43 – 7.37 (m, 1H), 7.33 (t, *J* = 7.3 Hz, 2H), 3.74 (s, 6H), 1.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 137.4, 130.2, 129.8, 129.0, 60.2, 53.3, 22.6; IR (KBr, v / cm⁻¹) 2954, 1735, 1441, 1262, 755, 695; HRMS (ESI⁺) Calcd for C₁₂H₁₄O₄S (M+Na⁺) 277.0505, Found 277.0503.

dimethyl 2-benzoyl-2-(phenylthio)malonate (5):

28.9 mg, 84%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 7.3 Hz, 2H), 7.63 (t, J = 7.2 Hz, 1H), 7.55 (d, J = 7.0 Hz, 2H), 7.49 (t, J = 7.7 Hz, 3H), 7.40 (dd, J = 14.9, 7.1 Hz, 3H), 3.72 (s, 3H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.4, 163.6, 163.0, 160.0, 134.1, 133.7, 131.3, 130.5, 128.9, 128.7, 128.1, 118.2, 53.7, 52.9, 52.7; IR (KBr, v / cm⁻¹) 2956, 1723, 1540, 1244, 722, 691; HRMS (ESI⁺) Calcd for C₁₈H₁₆O₅S (M+Na⁺) 367.0611, Found 367.0608.

1-fluoro-1-(phenylthio)propan-2-one (6a); 3-fluoro-3-(phenylthio)pentane-2,4dione (6b):

Total: 17.7 mg, **6a**, 19%; **6b**, 63%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.51 (m, 2H), 7.42 – 7.32 (m, 3H), 6.06 (s, 1H), 5.93 (s, 1H), 2.22 (d, J = 3.5 Hz, 1H), 2.13 (d, J = 2.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 199.5, 197.7, 197.4, 135.9, 134.2, 134.2, 130.5, 129.7,

129.6, 129.5, 101.0, 98.6, 26.7, 26.3; IR (KBr, v / cm⁻¹) 3453, 2928, 1730, 1440, 1359,

1180, 691; HRMS (ESI⁺) Calcd for C₉H₉FOS (M+Na⁺) 207.0250, Found 207.0249; HRMS (ESI⁺) Calcd for C₁₁H₁₁FO₂S (M+Na⁺) 249.0356, Found 249.0359.

dimethyl 2-(phenylsulfonyl)malonate (7):

25.8 mg, 95%, colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.95 (m, 2H), 7.71 (t, *J* = 7.5 Hz, 1H), 7.58 (t, *J* = 7.8 Hz, 2H), 5.01 (s, 1H), 3.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 137.3, 135.0, 130.2, 129.1, 74.5, 53.9; IR (KBr, v / cm⁻¹) 2958, 1746, 1450, 1336, 1154, 1083, 688; HRMS (ESI⁺) Calcd for C₁₁H₁₂O₆S (M+Na⁺) 295.0247, Found 295.0251.

3,5-dimethyl-1-phenyl-4-(phenylthio)-1H-pyrazole (8):

25.8 mg, 92%, colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, *J* = 4.3 Hz, 4H), 7.43 – 7.36 (m, 1H), 7.24 (dd, *J* = 10.2, 4.8 [Hz, 2H), 7.14 – 7.04 (m, 3H), 2.35 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 144.3, 139.8, 138.4, 129.3, 129.0,

128.0, 125.4, 125.0, 124.8, 106.1, 12.2, 11.7; IR (KBr, v/cm^{-1}) 3058, 1579, 1582, 1504, 1478, 1023, 734, 690, HRMS (ESI⁺) Calcd for C₁₇H₁₆N₂S (M+Na⁺) 303.0926, Found 303.0928.

4-butyl-1,2-diphenyl-4-(phenylthio)pyrazolidine-3,5-dione (10):

1.23 g (gram scale experiment), 83%, faint yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.1 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.7 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 4H), 7.08 (t, *J* = 7.3 Hz, 2H), 6.80 (d, *J* = 7.4 Hz, 4H), 2.21 – 2.09 (m, 2H), 1.36 (dd, *J* = 19.7, 16.0 Hz, 4H), 0.87 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 137.4, 134.9,

130.6, 129.6, 128.9, 128.4, 127.1, 123.1, 59.0, 33.5, 27.4, 22.8, 13.8; IR (KBr, v / cm⁻¹) 2961, 2927, 1754, 1724, 1597, 1491, 1292, 755, 693; HRMS (ESI⁺) Calcd for C₂₅H₂₄N₂O₂S (M+Na⁺) 439.1451, Found 439.1452.

Scheme S1. Gram scale experiments.

A gram-scale experiment was carried out under standard condition: a round flask equipped with a magnetic stir bar was charged with thiol **1a** (0.6 g, 1.5 eq), Phenylbutazone **9** (1.1 g, 1.0 eq), KI (60 mg), NaOH (0.22 g, 1.5 eq), CH₃CN (15 ml). The resulting mixture was stirred at room temperature for 15 min, then the temperature was elevated to 80 °C slowly and stirred for 24 h, then quenched by saturated NaHCO₃ aqueous solution, and extracted with ethyl acetate (3*50mL), the combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20 : 1) to give **10** as faint yellow solid (1.23g, 83% yield).

Scheme S2. Controlled experiments.

(a) Reaction in eq 1.

A test tube equipped with a magnetic stir bar was charged with thiophenol **1a** (0.10 mmol), KI (10 mol%) or not, CH₃CN (1 mL) under O₂ atmosphere. The resulting mixture was stirred at 80 °C for 1.5 h and 24 h respectively, then the reaction solution

was concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 80:1) to give **1aa** as white crystal (yield was depicted in eq 1 respectively).

(b) Reaction in eq 2.

A test tube equipped with a magnetic stir bar was charged with 1,2-diphenyldisulfane 1aa (0.05 mmol), dimethyl malonate 2a (0.20 mmol), KI (10 mol%), NaOH (0.15 mmol) CH₃CN (1 mL) under O₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h, then quenched by saturated NaHCO₃ aqueous solution, and extracted with ethyl acetate (3*25mL), the combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20:1) to give **3aa** as colorless oil (yield: 87%).

(c) Reaction in eq 3.

A test tube equipped with a magnetic stir bar was charged with thiophenol 1a (0.10 mmol), dimethyl malonate 2a (0.20 mmol), I2 (5 mol%), NaOH (0.15 mmol) CH3CN (1 mL) under O₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h, then quenched by saturated NaHCO3 aqueous solution, and extracted with ethyl acetate (3*25mL), the combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20:1) to give **3aa** as colorless oil (yield: 90%).

(d) Reaction in eq 4.

A test tube equipped with a magnetic stir bar was charged with thiophenol **1a** (0.10 mmol), dimethyl malonate **2a** (0.15 mmol), KI (10 mol%), NaOH (0.15 mmol), BHT or TEMPO (0.20 mmol) and CH₃CN (1 mL) under O₂ atmosphere. The resulting mixture was stirred at 80 °C for 18 h, then quenched by saturated NaHCO₃ aqueous solution, and extracted with ethyl acetate (3*25mL), the combined organic extracts were concentrated and the resulting residue was purified by column chromatography on silica gel (hexane / EtOAc = 20:1) to give **3aa** as colorless oil (yield: 85%).

Scheme S3. A proposed mechanism.

The proposed mechanism as fellows^[4]: 1) Iodine ions (I^-) was oxidized to iodine (I_2) by oxygen molecule. 2) Nucleophilic thiol **1** attacked I_2 and generated the intermediate **A** as well as one molecule of I^- through heterolysis, besides, the disulfide **B** could be directly formed by oxidation of thiol under the oxygen atmosphere. 3) The intermediate **A** was attacked by the enolate **2'** formed the final product **3**, alternatively, disulfide was yielded. 4) An activated transition state **C** was provided through oxidizing the disulfide with I_2 , meanwhile, the final product could be generated as well, from the enolate **2'** nucleophilic attacked **B**. 5) Intermediate **C** was then converted to the desired product by a direct nucleophilic substitution and released one molecule of intermediate **A**.

Referrences:

- Y. Ashida, Y. Sato, T. Suzuki, K. Ueno, K.-i. Kai, H. Nakatsuji and Y. Tanabe, *Chem. Eur. J.*, 2015, **21**, 5934.
- L.-S. Ge, Z.-L. Wang, X.-L. An, X. Luo and W.-P. Deng, *Org. Biomol. Chem.*, 2014, 12, 8473.
- Y. Xiaoqing, Y. Jingjun, Y. Ronghua, C. Zuxing and Y. Guichun, *Lett. Org. Chem.*, 2007, 4, 239.
- a) H.-H. Wang, T. Shi, W.-W. Gao, Y.-Q. Wang, J.-F. Li, Y. Jiang, Y. S. Hou, C. Chen, X. Peng and Z. Wang, *Chem. - Asian J.*, 2017, **12**, 2675; b) H.-H. Wang, T. Shi, W.-W. Gao, H.-H. Zhang, Y.-Q. Wang, J.-F. Li, Y.-S. Hou, J.-H. Chen, X. Peng and Z. Wang, *Org. Biomol. Chem.*, 2017, **15**, 8013; c) T.-Q. Yu, Y.-S. Hou, Y. Jiang, W.-X. Xu, T. Shi, X. Wu, J.-C. Zhang, D. He and Z. Wang, *Tetrahedron Lett.*, 2017, **58**, 2084; d) Y. Jiang, J.-d. Deng, H. Wang, J.-x. Zou, Y. Wang, J.-h. Chen, L.-q. Zhu, H.-H. Zhang, X. Peng and Z. Wang, *Chem. Commun.*, 2017. DOI: 10.1039/C7CC09026A.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 f1 (ppm) 40 20 10 0 -10

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)

77:23

 $\chi^{2,\,23}_{2,\,12}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

