Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Metal-Free Synthesis of Imidazole by BF₃·Et₂O Promoted Denitrogenative Transannulation of *N*-Sulfonyl-1,2,3-Triazole

Dongdong Yang, Lihong Shan, Ze-Feng Xu* and Chuan-Ying Li*

Department of Chemistry, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, China.

Contents:

General	S2
General procedure for preparation of phenylacetylene	S2
Synthetic procedure and spectra data of <i>N</i> -sulfonyl-1,2,3-triazole (1)	S4
Reaction scope	S10
Procedure for the synthesis of 2-methyl-4-phenyl-1H-imidazole (3a)	S18
References	S18
¹ H and ¹³ C NMR spectra for new compounds	S19

General

Analytical thin layer chromatography (TLC) was performed using Silica Gel HSGF₂₅₄ pre-coated plates. Flash column chromatography was performed using 200-300 Mesh Silica Gel. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded using Brucker Avance II DMX 400MHz spectrometers. Chemical shift (δ) is reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.0 ppm), CDCl₃ (7.26 ppm) or DMSO (2.50 ppm). Coupling constants (J) are reported in Hz. Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; Carbon-13 nuclear magnetic resonance (¹³C-NMR) spectra were recorded using a Brucker Avance II DMX 400 spectrometer at 100MHz. Chemical shift is reported in ppm relative to the carbon resonance of CDCl₃ (77.00 ppm) or DMSO (40.45 ppm). High resolution mass spectra (HRMS) were obtained by center for instrumental analysis of Zhejiang Sci-Tech University and a waters TOFMS GCT premier instrument for HRMS. The results are reported as m/e (relative ratio). Accurate masses are reported for the molecular ion (M⁺) or a suitable fragment ion. Substrates were prepared according to the literature indicated in the following text.

General procedure for preparation of phenylacetylene:

Procedure A¹:

To a triethylamine solution (10.0 mL) of $Pd(PPh_3)_2Cl_2$ (0.15 mmol) and CuI (0.5 mmol) was added bromobenzene (5.0 mmol) and stirred for 10 min, then added trimethylsilylacetylene (6.0 mmol) dropwise over 30 min. The resulting suspension was allowed to be stirred for 4 h at 50 °C. After completion of the reaction, the mixture was filtered through a short celite bed and the filtrate was concentrated under reduced pressure. The residue was eluted through a silica column (PE) to afford compound **S1** as pale yellow oil.

To trimethyl(phenylethynyl)silane (S1), 10.0 mL of MeOH and K_2CO_3 (1.0 mmol) were added and stirred at room temperature, until TLC analysis showed that S1 was completely consumed. The reaction mixture filtered through a short plug of silica gel. The filtrate was concentrated and then purified by flash column chromatography with PE/EtOAc (10:1) as eluent to give the corresponding product S2 as colorless oil.

Procedure B¹⁻³:

To a solution of benzaldehyde (5.0 mmol) and CBr_4 (10.0 mmol) in CH_2Cl_2 (10.0 mL) was added the solution of PPh₃ (20.0 mmol) in CH_2Cl_2 (10.0 mL) via cannula at 0 °C. After stirring for 30 min, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE) to afford **S3** as yellow oil.

To a solution of **S3** (4.0 mmol) in THF (10.0 mL) was added *n*-BuLi (8.0 mmol, 2.5 M in hexane) dropwise at -78 °C. After stirring for 2 h, MeOH (4.0 mL) was added and the mixture was stirred for an additional hour, then the reaction was quenched with saturated aqueous NH₄Cl at 0 °C, and the aqueous phase was extracted with Et₂O (10 mL×2). The combined organic phase was dried over Na₂SO₄, after filtration, the filtration was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE) to afford **S2** as yellow oil.

Procedure C¹⁻³:

To a solution of estrone (2.7 g, 10.0 mmol) and pyridine (1.62 ml, 20.0 mmol) in 20 mL dry DCM was added Tf₂O (2.0 mL, 12.0 mmol) dropwise at 0 °C. After that, the mixture was warmed to rt, and stirred overnight. The mixture was then quenched with HCl (10%) and extracted with CH_2Cl_2 , washed with saturated NaHCO₃ and saturated brine. The organic layer was dried over anhydrous Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure, and the crude product was purified by flash column chromatography on silica gel to give the corresponding product S4.

A mixture of S4 (1.61 g, 4.0 mmol), ethynyltrimethylsilane (0.79 mL, 5.6 mmol), triethylamine (3.0 mL), and Pd(PPh₃)₂Cl₂ (84 mg, 0.12 mmol) in 15 ml DMF was stirred at 90°C for 4 h under nitrogen. The reaction mixture was then diluted with water, extracted with 1: l petroleum ether/ether, washed with water until neutral, and dried (Na₂SO₄), after filtration the filtrate was evaporated. Chromatography of the residue on silica gel provided the corresponding product S5.

To **S5** (1.16 g, 3.3 mmol) a solution of K_2CO_3 (0.52 g, 4.95 mmol) in 10 mL MeOH was added and the mixture was stirred at room temperature, until TLC analysis showed that **S5** was completely consumed. The reaction mixture was filtered through a short plug of silica gel. The filtration was concentrated and then purified by flash chromatography to give the corresponding product **S6** (726.5 mg, overall 54% yield from estrone)

Synthetic procedure and spectra data of *N*-sulfonyl-1,2,3-triazole (1):

A vial was charged with copper(I) thiophene-2-carboxylate (CuTC, 0.2 mmol, 0.1 equiv in regards to alkyne), toluene (10.0 mL), and the alkyne S2 (2.0 mmol). The reaction mixture was cooled in an ice-water bath. Subsequently, the sulfonyl azide (2.0 mmol) was added slowly as the limiting reagent to avoid a run-away exotherm, and the reaction mixture allowed to warm to room temperature. The reaction mixture was stirred until complete consumption of sulfonyl azide monitored by TLC. The reaction was diluted with saturated NH₄Cl (aq.) and extracted with EtOAc (10.0 mL×2). The combined organic layer was dried over anhydrous Na₂SO₄ and filtered through celite. The filtrate was concentrated in vacuo and the obtained crude product was purified by flash column chromatography on silica gel (PE: EtOAc = 3:1) to give the desired product.

Compounds 1a-e, 1g were synthesized by using procedure D.

Compounds 1f-i, 1k-o, 1q and 1r were synthesized by using procedure B and procedure D.

Compounds **1j** and **1p** were synthesized by using procedure A and procedure D. Compound **1x** was synthesized by using procedure C and procedure D

1-(methylsulfonyl)-4-phenyl-1H-1,2,3-triazole (1a)⁴: pale white solid, yield: 75%; ¹H NMR (400 MHz, Chloroform-d) δ 8.31 (s, 1H), 7.86-7.84 (m, 2H), 7.54 – 7.32 (m, 3H), 3.56 (s, 3H).

4-phenyl-1-tosyl-1H-1,2,3-triazole (1b)⁴: pale white solid, yield: 80%; ¹H NMR (400 MHz, Chloroform-d) δ 8.32 (s, 1H), 8.02 (d, *J* = 8.1 Hz, 2H), 7.82 (d, *J* = 7.7 Hz, 2H), 7.46-7.31 (m, 5H), 2.44 (s, 3H).

1-((4-bromophenyl)sulfonyl)-4-phenyl-1H-1,2,3-triazole (1c)⁴: pale white solid, yield: 73%;¹H NMR (400 MHz, Chloroform-d) δ 8.31 (s, 1H), 8.01 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 7.0 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.46-7.38 (m, 3H).

1-(naphthalen-2-ylsulfonyl)-4-phenyl-1H-1,2,3-triazole (1d)⁵: pale white solid, yield: 85%; ¹H NMR (400 MHz, Chloroform-d) δ 8.78 (s, 1H), 8.38 (s, 1H), 8.05-8.00 (m, 3H), 7.92 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.74-7.64 (m, 2H), 7.50 – 7.29 (m, 3H).

1-(naphthalen-2-ylsulfonyl)-4-(p-tolyl)-1H-1,2,3-triazole (1e): pale white solid, yield: 70%, m.p.: 133.8-135.4 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.76 (s, 1H), 8.33 (s, 1H), 8.07 – 7.96 (m, 3H), 7.91 (d, J = 8.1 Hz, 1H), 7.72-7.63 (m, 4H), 7.22 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.51, 139.11, 135.96, 132.80, 131.85, 131.18, 130.44, 130.26, 129.74, 129.62, 128.25, 128.06, 125.95, 125.90, 122.16, 118.61, 21.30. HRMS (ESI) calcd for C₁₉H₁₆N₃O₂S⁺ 350.0958, found 350.0970.

4-(4-(tert-butyl)phenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1f): pale white solid, yield: 77%, m.p.: 124.6-125.4 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.77 (s, 1H), 8.36 (s, 1H), 8.03-7.92 (m, 3H), 7.91 (d, *J* = 7.4 Hz, 1H), 7.75 (d, *J* = 9.5 Hz, 2H), 7.72-7.65 (m, 2H), 7.54 – 7.36 (m, 2H), 1.33 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 152.34, 147.45, 135.95, 132.81, 131.85, 131.14, 130.44, 130.25, 129.74, 128.24, 128.05, 125.88, 125.81, 122.14, 118.70, 34.71, 31.17. HRMS (ESI) calcd for C₂₂H₂₂N₃O₂S⁺ 392.1427, found 392.1434.

4-(4-fluorophenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1g): pale yellow solid, yield: 55%, m.p.: 148.5-150.8 °C; ¹H NMR (400 MHz, DMSO-d6) δ 9.46 (s, 1H), 8.99 (s, 1H), 8.33 (d, *J* = 8.2 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 8.05 (dd, *J* = 8.8, 1.8 Hz, 1H), 8.02 – 7.92 (m, 2H), 7.83 (t, *J* = 7.4 Hz, 1H), 7.77 (t, *J* = 7.6 Hz, 1H), 7.31 (t, *J* = 8.9 Hz, 2H).¹³C NMR (100 MHz, DMSO-d6) δ 156.10 (d, J = 241.3 Hz), 145.15, 144.48, 132.91, 132.21, 129.06 (d, J = 8.8 Hz), 128.57, 127.70 (d, J = 7.5 Hz), 127.58, 126.88, 126.68, 126.48, 124.27, 123.90, 116.50 (d, J = 22.1 Hz), 115.94. HRMS (ESI) calcd for C₁₈H₁₃FN₃O₂S⁺ 354.0707, found 354.0719.

4-(4-chlorophenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1h): pale white solid, yield: 60%, m.p.: 154.2-155.9 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.77 (s, 1H), 8.37 (s, 1H), 8.02-8.00 (m, 3H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.76-7.75 (m, 4H), 7.39 (d, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.37, 136.07, 135.02, 132.66, 131.91, 131.34, 130.59, 130.36, 129.80, 129.24, 128.36, 128.12, 127.33, 122.20, 119.09. HRMS (ESI) calcd for C₁₈H₁₃ClN₃O₂S⁺ 370.0412, found 370.0423.

4-(4-bromophenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1i): pale white

solid, yield: 60%, m.p.: 146.9-147.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.77 (s, 1H), 8.38 (s, 1H), 8.02-8.00 (m, 3H), 7.92 (d, J = 8.0 Hz, 1H), 7.77 – 7.60 (m, 4H), 7.54 (d, J = 7.9 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.37, 136.01, 132.57, 132.14, 131.85, 131.30, 130.56, 130.34, 129.76, 128.32, 128.08, 127.75, 127.54, 123.16, 122.14, 119.17. HRMS (ESI) calcd for C₁₈H₁₃BrN₃O₂S⁺ 413.9906, found 413.9911.

methyl 4-(1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazol-4-yl)benzoate (1j): pale yellow solid, yield: 57%, m.p.: 168.5-169.2 °C; ¹H NMR (400 MHz, DMSO-d6) δ 9.63 (s, 1H), 9.01 (s, 1H), 8.34-8.26(m, 2H), 8.24-8.09(m, 6H), 7.83-7.78(m, 2H), 3.86 (s, 3H).¹³C NMR (100 MHz, DMSO-d6) δ 165.83, 145.20, 134.91, 132.73, 132.06, 129.86, 129.80, 128.77, 128.40, 127.40, 127.37, 126.48, 126.30, 125.55, 125.23, 124.08, 123.78, 52.07. HRMS (ESI) calcd for $C_{20}H_{16}N_3O_4S^+$ 394.0856, found 394.0862.

4-(2-bromophenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1k): pale yellow solid, yield: 55%, m.p.: 96.9-68.5 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.86 (s, 1H), 8.79 (s, 1H), 8.13–7.98 (m, 4H), 7.92 (d, J = 8.0 Hz, 1H), 7.78–7.60 (m, 3H), 7.46 – 7.33 (m, 1H), 7.23-7.19 (m, 1H).¹³C NMR (100 MHz, Chloroform-d) δ 144.89, 136.00, 133.67, 132.66, 131.86, 131.30, 130.72, 130.52, 130.32, 130.12, 129.78, 129.51, 128.29, 128.07, 127.73, 122.37, 122.16, 121.34. HRMS (ESI) calcd for C₁₈H₁₃BrN₃O₂S⁺ 413.9906, found 413.9906.

4-([1,1'-biphenyl]-2-yl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (11): light yellow solid, yield: 50%, m.p.: 103.5-105.2 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.58 (s, 1H), 8.11–7.89 (m, 4H), 7.80 (d, J = 8.7 Hz, 1H), 7.71 (dd, J = 12.5, 8.6 Hz, 2H), 7.44 (dd, J = 6.3, 2.7 Hz, 2H), 7.34 (t, J = 7.1 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 7.13 (d, J = 7.4 Hz, 2H), 7.03-7.02 (m, 1H).¹³C NMR (100 MHz, Chloroform-d) δ 146.25, 140.88, 140.72, 135.87, 132.84, 131.79, 130.88, 130.45, 130.16, 130.13, 129.70, 129.06, 128.91, 128.84, 128.55, 128.26, 128.06, 127.89, 127.60, 127.36, 121.99, 121.79. HRMS (ESI) calcd for C₂₄H₁₈N₃O₂S⁺ 412.1114, found 412.1120.

4-(3-bromophenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1m): light yellow solid, yield: 55%, m.p.: 102.3-104.2 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.74 (s, 1H), 8.41 (s, 1H), 8.02-7.94 (m, 4H), 7.87 (d, J = 8.0 Hz, 1H), 7.80–7.54 (m, 3H), 7.43 (d, J = 7.8 Hz, 1H), 7.24 (t, J = 7.9 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.86, 135.89, 132.39, 131.87, 131.71, 131.20, 130.67, 130.48, 130.40, 130.27, 129.66, 128.86, 128.23, 127.98, 124.49, 122.90, 122.00, 119.56. HRMS (ESI) calcd for C₁₈H₁₃BrN₃O₂S⁺ 413.9906, found 413.9914.

4-(2-bromo-5-fluorophenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (**1n**): yellow solid, yield: 45%, m.p.: 154.2-155.7 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.78 (s, 1H), 8.39 (s, 1H), 8.02-8.00 (m, 2H), 7.92 (d, J = 8.1 Hz, 1H), 7.74-7.68 (m, 2H), 7.54-7.53 (m, 2H), 7.41-7.35 (m, 1H), 7.07-7.03 (m, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 163.05 (d, J = 246.6 Hz), 146.30, 136.04, 132.56, 131.86, 131.33, 130.88 (d, J = 8.5 Hz), 130.67, 130.58, 130.36, 129.78, 128.34, 128.09, 122.15, 121.69 (d, J = 3.1 Hz), 119.49, 115.87, 113.08 (d, J = 23.2 Hz). HRMS (ESI) calcd for C₁₈H₁₂BrFN₃O₂S⁺ 431.9812, found 431.9821.

4-(2,4-dimethylphenyl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (10): pale white solid, yield: 65%, m.p.: 137.6-139.3 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.78 (s, 1H), 8.24 (s, 1H), 8.11 – 7.98 (m, 3H), 7.92 (d, J = 8.2 Hz, 1H), 7.83 – 7.56 (m, 3H), 7.07 (d, J = 8.9 Hz, 2H), 2.41 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.75, 138.89, 135.97, 135.60, 132.82, 131.87, 131.77, 131.19, 130.45, 130.27, 129.76, 128.94, 128.25, 128.07, 126.94, 125.17, 122.19, 120.62, 21.27, 21.11. HRMS (ESI) calcd for C₂₀H₁₈N₃O₂S⁺ 364.1114, found 364.1118.

4-(naphthalen-1-yl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1p): yellow solid, yield: 55%, m.p.: 119.2-120.0 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.83 (s, 1H), 8.46 (s, 1H), 8.29 – 8.18 (m, 1H), 8.11-8.04 (m, 1H), 8.04-8.02 (m, 2H), 7.93-7.88 (m, 3H), 7.81 – 7.59 (m, 3H), 7.55 – 7.44 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.50, 136.01, 133.74, 132.65, 131.86, 131.34, 130.79, 130.50, 130.34, 129.76, 129.75, 128.53, 128.28, 128.07, 127.73, 126.97, 126.18, 126.06, 125.18, 124.84, 122.22, 121.92. HRMS (ESI) calcd for C₂₂H₁₆N₃O₂S⁺ 386.0958, found 386.0966.

4-(naphthalen-2-yl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1q): pale white solid, yield: 70%, m.p.: 136.9-138.5 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.80 (s, 1H), 8.49 (s, 1H), 8.36 (s, 1H), 8.12 – 7.97 (m, 3H), 7.95 – 7.77 (m, 5H), 7.73-7.64 (m, 2H), 7.50-7.48 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.49, 135.98, 133.45, 133.28, 132.73, 131.85, 131.22, 130.48, 130.30, 129.75, 128.78, 128.26, 128.06, 127.76, 126.65, 126.03, 125.29, 125.29, 123.56, 122.16, 119.29, 119.27. HRMS (ESI) calcd for C₂₂H₁₆N₃O₂S⁺ 386.0958, found 386.0971.

4-(1-bromonaphthalen-2-yl)-1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazole (1r): yellow solid, yield: 60%, m.p.: 142.6-144.4 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.79 (s, 1H), 8.50 (s, 1H), 8.38-8.35 (m, 1H), 8.12 – 7.96 (m, 2H), 7.93 – 7.77 (m, 5H), 7.71-7.65 (m, 2H), 7.52 – 7.42 (m, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.46, 135.94, 133.41, 133.24, 132.65, 131.81, 131.21, 130.47, 130.30, 129.73, 128.77, 128.25, 128.04, 127.74, 126.64, 125.99, 125.26, 123.54, 122.13, 119.28. HRMS (ESI) calcd for C₂₂H₁₅BrN₃O₂S⁺ 464.0063, found 464.0069.

(8R,9S,13S,14S)-13-methyl-3-(1-(naphthalen-2-ylsulfonyl)-1H-1,2,3-triazol-4-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (1x): yellow solid, yield: 75%, m.p.: 201.1-202.8 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.76 (s, 1H), 8.35 (s, 1H), 8.03-7.94 (m, 3H), 7.96 – 7.81 (m, 1H), 7.73-7.63 (m, 2H), 7.57-7.54 (m, 2H), 7.33 (d, J = 8.1 Hz, 1H), 2.94 (d, J = 8.8 Hz, 2H), 2.62 – 2.35 (m, 1H), 2.35 – 2.23 (m, 1H), 2.23 – 1.84 (m, 5H), 1.72 – 1.36 (m, 6H), 0.91 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 220.77, 147.38, 140.91, 137.21, 135.93, 132.75, 131.82, 131.12, 130.44, 130.24, 129.72, 128.24, 128.03, 126.54, 126.16, 125.92, 123.40, 122.11, 118.75, 50.41, 47.88, 44.34, 37.91, 35.78, 31.48, 29.24, 26.28, 25.58, 21.51, 13.77. HRMS (ESI) calcd for C₃₀H₃₀N₃O₃S⁺ 512.2002, found 512.2010.

Reaction scope

General procedure: Under a nitrogen atmosphere, nitrile (1 mL) was added to a reaction flask charged with *N*-sulfonyl-1,2,3-triazole **1** (0.2 mmol) and a stirring bar. The mixture was heated to reflux, and a solution of $BF_3 \cdot Et_2O$ (0.2 mmol) in nitrile (1 mL) was added in one portion. The reaction mixture was stirred at reflux until complete consumption of **1** monitored by TLC. The reaction mixture was filtered through a short plug of silica gel and the filtrate was concentrated and then purified by flash column chromatography (PE: EtOAc=3:1 as eluent) to give the corresponding product **2**.

The spectra data of **2b** was the same as that reported in ref. 6.

2-methyl-1-(methylsulfonyl)-4-phenyl-1H-imidazole (2a): yellow oil, yield: 58%; ¹H NMR (400 MHz, Chloroform-d) δ 7.74 (d, *J* = 7.5 Hz, 2H), 7.53 (s, 1H), 7.39 (t, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 3.27 (s, 3H), 2.70 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.92, 140.89, 132.03, 128.72, 127.97, 125.21, 113.59, 43.02, 15.18. HRMS (ESI) calcd for C₁₁H₁₃N₂O₂S⁺ 237.0692, found 237.0694.

2-methyl-4-phenyl-1-tosyl-1H-imidazole (2b)⁶: yellow oil, yield: 67%; ¹H NMR (400 MHz, Chloroform-d) δ 7.81 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 7.3 Hz, 2H), 7.67 (s, 1H), 7.41 – 7.32 (m, 4H), 7.29 (d, J = 7.4 Hz, 1H), 2.58 (s, 3H), 2.44 (s, 3H).

1-((4-bromophenyl)sulfonyl)-2-methyl-4-phenyl-1H-imidazole (2c): yellow oil, yield: 56%; ¹H NMR (400 MHz, Chloroform-d) δ 7.78 (d, *J* = 8.7 Hz, 2H), 7.74-7.70 (m, 4H), 7.65 (s, 1H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.30 (d, *J* = 7.3 Hz, 1H), 2.58 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.08, 140.97, 136.90, 133.17, 132.04, 130.22, 128.73, 128.68, 128.01, 125.22, 113.79, 15.28. HRMS (ESI) calcd for C₁₆H₁₄BrN₂O₂S⁺ 376.9954, found 376.9962.

2-methyl-1-(naphthalen-2-ylsulfonyl)-4-phenyl-1H-imidazole (2d): yellow oil, yield: 84%; ¹H NMR (400 MHz, Chloroform-d) δ 8.55 (s, 1H), 8.04 – 7.92 (m, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.84 – 7.71 (m, 4H), 7.71 – 7.59 (m, 2H), 7.36 (t, J = 7.5 Hz, 2H), 7.31 – 7.21 (m, 1H), 2.61 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.07, 140.53, 135.44, 134.47, 132.14, 131.79, 130.31, 130.01, 129.47, 129.27, 128.62, 128.21, 128.01, 127.79, 125.13, 121.37, 114.04, 15.19. HRMS (ESI) calcd for C₂₀H₁₇N₂O₂S⁺ 349.1005, found 349.1015.

2-methyl-1-(naphthalen-2-ylsulfonyl)-4-(p-tolyl)-1H-imidazole (2e): yellow oil, yield: 61%; ¹H NMR (400 MHz, Chloroform-d) δ 8.56 (s, 1H), 8.01-7.96 (m, 2H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.81-7.78 (m, 1H), 7.72 (s, 1H), 7.70-7.62 (m, 4H), 7.18 (d, *J* = 7.9 Hz, 2H), 2.61 (s, 3H), 2.35 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.97, 140.65, 137.63, 135.46, 134.60, 131.83, 130.30, 130.00, 129.50, 129.36, 129.33, 129.25, 128.21, 128.03, 125.06, 121.42, 113.55, 21.21, 15.22. HRMS (ESI)

calcd for C₂₁H₁₉N₂O₂S⁺ 363.1162, found 363.1177.

4-(4-(tert-butyl)phenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2f): yellow oil, yield: 85%; ¹H NMR (400 MHz, Chloroform-d) δ 8.55 (s, 1H), 8.00-7.95 (m, 2H), 7.90 (d, J = 7.9 Hz, 1H), 7.79 (dd, J = 8.7, 2.0 Hz, 1H), 7.75 (s, 1H), 7.71-7.63 (m, 4H), 7.41-7.39 (m, 2H), 2.61 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, Chloroform-d) δ 150.90, 145.97, 140.61, 135.42, 134.60, 131.80, 130.27, 129.97, 129.47, 129.35, 129.19, 128.19, 128.01, 125.54, 124.87, 121.36, 113.66, 34.56, 31.23, 15.22. HRMS (ESI) calcd for C₂₄H₂₅N₂O₂S⁺ 405.1631, found 405.1635.

4-(4-fluorophenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2g): yellow oil, yield: 82%; ¹H NMR (400 MHz, Chloroform-d) δ 8.56 (s, 1H), 7.99 (t, J = 9.2 Hz, 2H), 7.90 (d, J = 7.5 Hz, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.70-7.65 (m, 5H), 7.05 (t, J = 8.4 Hz, 2H), 2.61 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 162.44 (d, J = 246.6 Hz), 146.13, 139.66, 135.48, 134.43, 131.82, 130.35, 130.07, 129.49, 129.35, 128.38 (d, J = 3.2 Hz), 128.25, 128.03, 126.88 (d, J = 8.0 Hz), 121.37, 115.56 (d, J = 21.7 Hz), 113.67, 15.14. HRMS (ESI) calcd for C₂₀H₁₆FN₂O₂S⁺ 367.0911, found 367.0923.

4-(4-chlorophenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2h): yellow oil, yield: 80%; ¹H NMR (400 MHz, Chloroform-d) δ 8.56 (s, 1H), 7.99 (t, J = 8.9 Hz, 2H), 7.91 (d, J = 7.9 Hz, 1H), 7.79 (d, J = 10.1 Hz, 1H), 7.73 (d, J = 9.3 Hz, 1H), 7.72 – 7.56 (m, 4H), 7.33 (d, J = 8.4 Hz, 2H), 2.61 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.23, 139.39, 135.50, 134.30, 133.49, 131.81, 130.61, 130.39, 130.12, 129.50, 129.41, 128.80, 128.29, 128.04, 126.42, 121.35, 114.20, 15.13. HRMS (ESI) calcd for C₂₀H₁₆ClN₂O₂S⁺ 383.0616, found 383.0624.

4-(4-bromophenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2i): yellow oil, yield: 85%; ¹H NMR (400 MHz, Chloroform-d) δ 8.56 (s, 1H), 7.99 (t, J = 9.1 Hz, 2H), 7.91 (d, J = 7.9 Hz, 1H), 7.79 (dd, J = 8.7, 1.9 Hz, 1H), 7.75 (s, 1H), 7.73 – 7.62 (m, 2H), 7.61 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.21, 139.48, 135.48, 134.33, 131.80, 131.72, 131.16, 130.37, 130.10, 129.49, 129.40, 128.27, 128.03, 126.69, 121.60, 121.35, 114.26, 15.16. HRMS (ESI) calcd for C₂₀H₁₅BrN₂NaO₂S⁺ 448.9930, found 448.9936.

methyl 4-(2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazol-4-yl)benzoate (2j): yellow oil, yield: 49%; ¹H NMR (400 MHz, Chloroform-d) δ 8.58 (s, 1H), 8.09 – 7.96 (m, 4H), 7.92 (d, J = 8.0 Hz, 1H), 7.85 (s, 1H), 7.82-7.80 (m, 3H), 7.75 – 7.61 (m, 2H), 3.91 (s, 3H), 2.61 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 166.80, 139.48, 136.54, 135.55, 134.27, 131.83, 130.47, 130.44, 130.18, 130.02, 129.53, 129.51, 129.16, 128.33, 128.07, 124.91, 121.37, 115.45, 52.06, 15.18. HRMS (ESI) calcd for $C_{22}H_{19}N_2O_4S^+$ 407.1066, found 407.1071

4-(2-bromophenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2k): yellow oil, yield: 73%; ¹H NMR (400 MHz, Chloroform-d) δ 8.58 (s, 1H), 8.24 (s, 1H), 8.06 – 7.97 (m, 2H), 7.92 (t, J = 9.0 Hz, 2H), 7.83 (d, J = 8.8 Hz, 1H), 7.71-7.61 (m, 3H), 7.33 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 7.7 Hz, 1H), 2.61 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.04, 137.89, 135.45, 134.51, 133.61, 132.71, 131.80, 130.40, 130.34, 130.02, 129.49, 129.30, 128.74, 128.21, 128.02, 127.39, 121.40, 120.94, 118.22, 15.07. HRMS (ESI) calcd for C₂₀H₁₆BrN₂O₂S⁺ 427.0110, found 427.0117.

4-([1,1'-biphenyl]-2-yl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (21): yellow oil, yield: 58%; ¹H NMR (400 MHz, Chloroform-d) δ 8.37 (s, 1H), 8.07 – 7.88 (m, 4H), 7.74-7.67 (m, 2H), 7.49 (d, J = 8.7 Hz, 1H), 7.40 (d, J = 15.1 Hz, 1H), 7.35-7.30 (m, 4H), 7.28 – 7.20 (m, 3H), 6.39 (s, 1H), 2.60 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 144.81, 142.04, 140.19, 138.84, 135.40, 134.56, 131.74, 130.80, 130.13, 130.08, 129.97, 129.49, 129.21, 129.13, 128.43, 128.31, 128.15, 128.01,

127.63, 127.46, 127.13, 121.49, 117.26, 15.15. HRMS (ESI) calcd for C₂₆H₂₁N₂O2S⁺ 425.1318, found 425.1327.

4-(3-bromophenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2m): yellow oil, yield: 52%; ¹H NMR (400 MHz, Chloroform-d) δ 8.57 (s, 1H), 8.06 – 7.94 (m, 3H), 7.91-7.90 (m, 2H), 7.84 – 7.73 (m, 1H), 7.73 – 7.60 (m, 3H), 7.38 (d, *J* = 8.8 Hz, 1H), 7.22 (t, *J* = 7.9 Hz, 1H), 2.62 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.28, 139.05, 135.49, 134.25, 134.20, 131.79, 130.65, 130.40, 130.15, 130.12, 129.50, 129.43, 128.28, 128.12, 128.03, 123.65, 122.83, 121.33, 114.69, 15.13. HRMS (ESI) calcd for C₂₀H₁₆BrN₂O₂S⁺ 427.0110, found 427.0124.

4-(2-bromo-5-fluorophenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (**2n**): yellow oil, yield: 60%; ¹H NMR (400 MHz, Chloroform-d) δ 8.57 (s, 1H), 8.02-7.98 (m, 2H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.84 – 7.74 (m, 1H), 7.74 – 7.61 (m, 2H), 7.50-7.43 (m, 2H), 7.34-7.29 (m, 1H), 6.98-6.93(m, 1H), 2.61 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 163.11 (d, *J* = 245.3 Hz), 146.20, 139.40 (d, *J* = 2.9 Hz), 135.52, 134.33, 131.83, 130.41, 130.21, 130.13, 129.48 (d, *J* = 8.7 Hz), 129.26, 128.30, 128.06, 121.37, 120.74, 120.72, 114.65, 114.46, 112.11 (d, *J* = 22.9 Hz), 15.15. HRMS (ESI) calcd for C₂₀H₁₅BrFN₂O₂S⁺ 445.0016, found 445.0020.

4-(2,4-dimethylphenyl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2o): yellow oil, yield: 64%; ¹H NMR (400 MHz, Chloroform-d) δ 8.57 (s, 1H), 8.01 (t, *J* = 7.8 Hz, 2H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 10.6 Hz, 1H), 7.74 – 7.62 (m, 3H), 7.57 (s, 1H), 7.05-7.03 (m, 2H), 2.62 (s, 3H), 2.45 (s, 3H), 2.33 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.07, 139.86, 137.42, 135.45, 135.00, 134.70, 131.85, 131.58, 130.31, 129.99, 129.50, 129.20, 128.68, 128.50, 128.22, 128.04, 126.70, 121.38, 116.15, 21.61, 21.03, 15.13. HRMS (ESI) calcd for C₂₂H₂₁N₂O₂S⁺ 377.1318, found 377.1330.

2-methyl-4-(naphthalen-1-yl)-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2p): yellow oil, yield: 71%; ¹H NMR (400 MHz, Chloroform-d) δ 8.63 (s, 1H), 8.40-8.34 (m, 1H), 8.04-8.01 (m, 2H), 7.93 (d, J = 8.0 Hz, 1H), 7.89 – 7.82 (m, 3H), 7.79 (s, 1H), 7.76 – 7.62 (m, 3H), 7.56 – 7.43 (m, 3H), 2.71 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 145.61, 139.90, 135.51, 134.57, 133.84, 131.87, 130.98, 130.41, 130.08, 129.93, 129.53, 129.42, 128.57, 128.41, 128.27, 128.07, 126.88, 126.44, 125.79, 125.38, 125.26, 121.46, 117.07, 15.25. HRMS (ESI) calcd for C₂₄H₁₉N₂O₂S⁺ 399.1162, found 399.1175.

2-methyl-4-(naphthalen-2-yl)-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (2q): yellow oil, yield: 95%; ¹H NMR (400 MHz, Chloroform-d) δ 8.59 (s, 1H), 8.30 (s, 1H), 8.02-7.97 (m, 2H), 7.91-7.80 (m, 7H), 7.71-7.63 (m, 2H), 7.55 – 7.36 (m, 2H), 2.67 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.30, 140.51, 135.49, 134.48, 133.53, 132.97, 131.83, 130.37, 130.05, 129.51, 129.41, 129.36, 128.34, 128.24, 128.17, 128.04, 127.63, 126.30, 125.92, 123.88, 123.25, 121.41, 114.47, 15.25. HRMS (ESI) calcd for C₂₄H₁₈N₂NaO₂S⁺ 421.0987, found 421.0985

4-(1-bromonaphthalen-2-yl)-2-methyl-1-(naphthalen-2-ylsulfonyl)-1H-imidazole (**2r**): yellow oil, yield: 99%; ¹H NMR (400 MHz, Chloroform-d) δ 8.59 (s, 1H), 8.30 (s, 1H), 8.00-7.93 (m, 2H), 7.89-7.79 (m, 6H), 7.63-7.61 (m, 2H), 7.47-7.41 (m, 2H), 2.67 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 146.23, 140.44, 135.40, 134.39, 133.47, 132.91, 131.75, 130.30, 129.98, 129.43, 129.38, 129.30, 128.28, 128.16, 128.11, 127.96, 127.58, 126.25, 125.87, 123.82, 123.21, 121.33, 114.44, 15.18. HRMS (ESI) calcd for C₂₄H₁₈BrN₂O₂S⁺ 477.0267, found 477.0271.

2-(chloromethyl)-1-(naphthalen-2-ylsulfonyl)-4-phenyl-1H-imidazole (2s): yellow oil, yield: 75%; ¹H NMR (400 MHz, Chloroform-d) δ 8.71 (s, 1H), 8.10 – 7.83 (m,

5H), 7.80 – 7.53 (m, 4H), 7.44 – 7.25 (m, 3H), 5.03 (s, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 144.09, 141.73, 135.62, 133.93, 131.75, 131.57, 130.39, 130.20, 129.62, 129.25, 128.67, 128.21, 128.02, 125.30, 122.48, 121.70, 115.34, 36.52. HRMS (ESI) calcd for C₂₀H₁₆ClN₂O₂S⁺ 383.0616, found 383.0624.

2-isopropyl-1-(naphthalen-2-ylsulfonyl)-4-phenyl-1H-imidazole (2t): yellow oil, yield: 59%; ¹H NMR (400 MHz, Chloroform-d) δ 8.55 (s, 1H), 8.01-7.96 (m, 2H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.80-7.75 (m, 3H), 7.74 (s, 1H), 7.71-7.63 (m, 2H), 7.38 (t, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 7.5 Hz, 1H), 3.68 – 3.44 (m, 1H), 1.25 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-d) δ 155.14, 140.55, 135.36, 135.23, 132.51, 131.84, 130.22, 129.94, 129.47, 129.00, 128.58, 128.19, 128.03, 127.69, 125.31, 121.28, 113.63, 27.61, 22.07. HRMS (ESI) calcd for C₂₂H₂₀N₂NaO₂S⁺ 399.1138, found 399.1143.

2-(2-chloroethyl)-1-(naphthalen-2-ylsulfonyl)-4-phenyl-1H-imidazole (2u): yellow oil, yield: 50%; ¹H NMR (400 MHz, Chloroform-d) δ 8.58 (s, 1H), 8.01-7.99 (m, 2H), 7.92 (d, *J* = 7.6 Hz, 2H), 7.85 – 7.61 (m, 5H), 7.45 – 7.27 (m, 3H), 3.92 (t, *J* = 7.5 Hz, 2H), 3.45 (t, *J* = 7.5 Hz, 2H).¹³C NMR (100 MHz, Chloroform-d) δ 145.80, 141.00, 135.56, 134.51, 131.92, 131.87, 130.47, 130.19, 129.60, 129.36, 128.67, 128.34, 128.07, 125.25, 122.51, 121.26, 114.23, 40.94, 31.94. HRMS (ESI) calcd for C₂₁H₁₈ClN₂O₂S⁺ 397.0772, found 397.0786.

2-benzyl-1-(naphthalen-2-ylsulfonyl)-4-phenyl-1H-imidazole (2v): yellow oil, yield: 39%; ¹H NMR (400 MHz, Chloroform-d) δ 8.02 (s, 1H), 7.82 – 7.72 (m, 6H), 7.68 – 7.59 (m, 2H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.41-7.37 (m, 2H), 7.34 – 7.26 (m, 2H), 7.10 – 7.01 (m, 4H), 4.49 (s, 2H). ¹³C NMR (100 MHz, Chloroform-d) δ 147.71, 140.97, 135.99, 135.22, 134.33, 132.23, 131.61, 129.80, 129.64, 129.41, 128.66,

128.56, 128.25, 127.90, 127.79, 127.75, 126.57, 125.31, 121.26, 114.54, 114.49, 34.36. HRMS (ESI) calcd for $C_{26}H_{21}N_2O_2S^+$ 425.1318, found 425.1335.

1-(naphthalen-2-ylsulfonyl)-2,4-diphenyl-1H-imidazole (2w): yellow oil, yield: 32%; ¹H NMR (400 MHz, Chloroform-d) δ 7.99 (s, 1H), 7.91 – 7.75 (m, 5H), 7.75 – 7.54 (m, 4H), 7.50 – 7.35 (m, 5H), 7.36 – 7.26 (m, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 148.66, 141.05, 135.31, 133.88, 132.09, 131.43, 130.69, 130.15, 130.06, 129.92, 129.67, 129.49, 129.29, 128.67, 127.98, 127.90, 127.88, 127.69, 125.34, 121.37, 115.38. HRMS (ESI) calcd for C₂₅H₁₉N₂O₂S⁺ 411.1162, found 411.1175.

(8R,9S,13S,14S)-13-methyl-3-(2-methyl-1-(naphthalen-2-ylsulfonyl)-1Himidazol-4-yl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-

cyclopenta[a]phenanthren-17-one (2x): yellow solid, yield: 53%, m.p.: 202.5-204.3 °C; ¹H NMR (400 MHz, Chloroform-d) δ 8.55 (s, 1H), 8.07 – 7.87 (m, 3H), 7.80-7.77 (m, 1H), 7.75 – 7.63 (m, 3H), 7.49-7.48 (m, 2H), 7.28 (d, *J* = 8.8 Hz, 1H), 3.13 – 2.75 (m, 2H), 2.61 (s, 3H), 2.53-2.46 (m, 2H), 2.15 – 1.93 (m, 5H), 1.66-1.29 (m, 6H), 0.90 (s, 3H). ¹³C NMR (100 MHz, Chloroform-d) δ 220.95, 146.04, 140.47, 139.52, 136.82, 135.45, 134.53, 131.81, 130.30, 130.02, 129.59, 129.49, 129.24, 128.22, 128.02, 125.63, 122.54, 121.36, 113.78, 50.42, 47.92, 44.34, 38.02, 35.79, 31.50, 29.26, 26.39, 25.62, 21.51, 15.19, 13.79. HRMS (ESI) calcd for C₃₂H₃₃N₂O₃S⁺ 525.2206, found 525.2212.

Procedure for the synthesis of 2-methyl-4-phenyl-1H-imidazole (3a):

Procedure E⁷:

Imidazole **2a** (31.2 mg, 0.1 mmol) was dissolved in MeOH (2.0 mL) in a roundbottom flask. HCl (concd, 0.5 mL) was added to this mixture in one portion. The reaction mixture was heated to reflux. After completion of the reaction, MeOH was evaporated and HCl (3M, 5.0 mL) was added. The resulting mixture was extracted with Et₂O (5.0 mL×2), and the organic phase was discarded. The aqueous phase was made alkaline with NaOH (4M, 5 mL) and again extracted with Et₂O (2×5.0 mL). The organic extracts were combined, dried over anhydrous Na₂SO₄, after filtration, the filtrate was concentrated under reduced pressure to provide **3a** at high purity (15.6 mg, yellow oil, 99% yield).

3a

2-methyl-4-phenyl-1H-imidazole (3a)⁸: yellow oil, yield: 99%; ¹H NMR (400 MHz, Chloroform-d) δ 7.75 (s, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.21 (d, J = 7.2 Hz, 1H), 7.17 (s, 1H), 2.37 (s, 3H).

References

1. Z.-F. Xu, X. Yu, D. Yang and C.-Y. Li, Org. Biomol. Chem., 2017, 15, 3161-3164.

2. S. Zhu, C. Wang, L. Chen, R. Liang, Y. Yu and H. Jiang, *Org. Lett.*, 2011, **13**, 1146-1149.

- 3. Q.-Y. Chen and Z.-Y. Yang, Tetrahedron Lett., 1986, 27, 1171-1174.
- 4. J. Raushel and V. V. Fokin, Org. Lett., 2010, 12, 4952-4955.
- 5. R.-Q. Ran, S.-D. Xiu and C.-Y. Li, Org. Lett., 2014, 16, 6394-6396.
- 6. A. Saito, Y. Kambara, T. Yagyu, K. Noguchi, A. Yoshimura and V. V. Zhdankin, *Adv. Synth. Catal.*, 2015, **357**, 667-671.
- 7. A. H. Sandtorv, C. Leitch, S. L. Bedringaas, B. T. Gjertsen and H. R. Bjorsvik,

ChemMedChem, 2015, **10**, 1522-1527.

8. P. F. Carneiro, B. Gutmann, R. O. M. A. de Souza and C. O. Kappe, *ACS Sustain. Chem. Eng.*, 2015, **3**, 3445-3453.

¹H and ¹³C NMR spectra for new compounds

S22

