Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information

A New Strategy for the Synthesis of Diverse Benzo[*a*]carbazoles *via* Divergent Catalytic Michael Reaction

Kripalaya Ratheesh Arya,^a Hazel A. Sparkes,^b Karnam Jayarampillai Rajendra Prasad^{*a}

^a Department of Chemistry, Bharathiar University, Coimbatore - 641046, India.

^b School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom.

Table of Contents

Crystallographic Data of **9b** and **9d**

Copies of ¹H and ¹³C NMR spectra for compounds 8, 9, 11 & 12

Copies of mass spectra for compounds 8a, 9a, 11a, 11c, 12a, 12b & 12d

Crystallographic Data

X-ray diffraction experiments on 9b and 9d were carried out at 100 (2) K on a Bruker APEX II CCD diffractometer using Mo-K_a radiation ($\lambda = 0.71073$ Å). Intensities were integrated¹ andabsorption corrections were based on equivalent reflections using SADABS.² Structures 9b and **9d** were solved using Superflip 3,4 and refined against F^2 in SHELXL^{5,6} using Olex2.⁷ All of the non-hydrogen atoms were refined anisotropically. While all of the hydrogen atoms were located geometrically and refined using a riding model, apart from the NH₂ protons which were located in the difference map and refined with isotropic displacement parameters. The dataset from the crystal of 9b was found to be twinned and was treated as a two component twin and refined against an hklf5 file. In the case of **9d** the molecule displayed disorder, the occupancies of the fragments was determined by refining them against a free variable with the sum of the two sites set to equal 1, the occupancies were then fixed at the refined values restraints were applied to maintain sensible geometries and thermal parameters. Crystal structure and refinement data are given in Table S1. Crystallographic data for compounds 9b and 9d have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication CCDC 1547596-1547597. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax(+44) 1223 336033, e-mail: deposit@ccdc.cam.ac.uk].

Reference

- Bruker, SAINT+ Integration Engine, Data Reduction Software, Bruker Analytical X-ray Instruments Inc., Madison, WI, USA, 2007.
- 2 Bruker, SADABS, Bruker AXS area detector scaling and absorption correction, Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 2001.
- 3 L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786-790.
- 4 L. Palatinus, S. J. Prathapa and S. van Smaalen, J. Appl. Crystallogr., 2012, 45, 575-580.
- 5 G. M. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122.
- 6 G. M. Sheldrick, Acta Crystallogr., C, 2015, 71, 3-8.
- 7 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H.Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.

 Table S1. Crystal data and structure refinement for 9b and 9d.

Identification code	9b	9d
Empirical formula	$C_{24}H_{18}N_4O_2$	$C_{23}H_{16}N_4O_2$
Formula weight	394.42	380.40
Temperature/K	100(2)	100(2)
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a/Å	8.7409(5)	8.3973(8)
<i>b</i> /Å	9.6037(6)	8.5161(9)
$c/\text{\AA}$	12.1665(7)	14.1035(13)
$\alpha/^{\circ}$	72.299(4)	97.848(6)
$eta / ^{\circ}$	87.366(4)	104.222(6)
$\gamma/^{\circ}$	72.955(5)	108.609(6)
Volume/Å ³	929.19(10)	900.83(16)
Z	2	2
$\rho_{calc}g/cm^3$	1.410	1.402
μ/mm^{-1}	0.093	0.093
F(000)	412.0	396.0
Crystal size/mm ³	$0.379\times0.245\times0.189$	$0.371 \times 0.285 \times 0.21$
Radiation	MoK α (λ = 0.71073)	MoK α (λ = 0.71073)
2θ range for data collection/°	3.518 to 52.738	3.064 to 56.204
	$-10 \le h \le 10$,	$-11 \le h \le 11$,
Index ranges	$-11 \le k \le 11$,	$-11 \le k \le 11$,
	$0 \le l \le 15$	$-17 \le l \le 18$
Reflections collected	3785	16596
R _{int} / R _{sigma}	0.0713 / 0.0604	0.0470 /0.0480
Data/restraints/parameters	3785/0/285	4340/275/345
Goodness-of-fit on F ²	1.050	1.023
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0525,$	$R_1 = 0.0495,$
	$wR_2 = 0.1019$	$wR_2 = 0.1160$
Final R indexes [all data]	$R_1 = 0.0807,$	$R_1 = 0.0780,$
	$wR_2 = 0.1168$	$wR_2 = 0.1334$
Largest diff. peak/hole / e Å ⁻³	0.21/-0.27	0.29/-0.27

Fig. S1. ¹H NMR spectrum of 1-(dicyanomethylene)-6-methyl-2,3,4,9-tetrahydrocarbazole (4a)

Fig. S2. ¹³C NMR spectrum of 1-(dicyanomethylene)-6-methyl-2,3,4,9-tetrahydrocarbazole (4a)

Fig. S3. ¹H NMR spectrum of 1-(dicyanomethylene)-8-methyl-2,3,4,9-tetrahydrocarbazole (4b)

Fig. S4. ¹H NMR spectrum of 1-(dicyanomethylene)-6-chloro-2,3,4,9-tetrahydrocarbazole (4c)

Fig. S5. ¹H NMR spectrum of 1-(dicyanomethylene)-2,3,4,9-tetrahydrocarbazole (4d)

Fig. S6. ¹³C NMR spectrum of 1-(dicyanomethylene)-2,3,4,9-tetrahydrocarbazole (4d)

Fig. S7. ¹H NMR spectrum of 2-amino-8-methyl-3-nitro-4-phenyl-11H-benzo[a]carbazol-1-carbonitrile (8a)

Fig. S8. ¹³C NMR spectrum of 2-amino-8-methyl-3-nitro-4-phenyl-11H-benzo[a]carbazol-1-carbonitrile (8a)

Fig. S9. HRMS spectrum of 2-amino-8-methyl-3-nitro-4-phenyl-11H-benzo[a]carbazol-1-carbonitrile (8a)

Fig. S10. ¹H NMR spectrum of 2-amino-10-methyl-3-nitro-4-phenyl-11*H*-benzo[*a*]carbazol-1-carbonitrile (8b)

Fig. S11. ¹³C NMR spectrum of 2-amino-10-methyl-3-nitro-4-phenyl-11H-benzo[a]carbazol-1-carbonitrile (8b)

Fig. S12. ¹H NMR spectrum of 2-amino-8-chloro-3-nitro-4-phenyl-11*H*-benzo[*a*]carbazol-1-carbonitrile (8c)

Fig. S13. ¹³C NMR spectrum of 2-amino-8-chloro-3-nitro-4-phenyl-11*H*-benzo[*a*]carbazol-1-carbonitrile (8c)

Fig. S14. ¹H NMR spectrum of 2-amino-8-methyl-3-nitro-4-(4'-methylphenyl)-11*H*-benzo[*a*]carbazol-1-carbonitrile (8e)

Fig. S15. ¹³C NMR spectrum of 2-amino-8-methyl-3-nitro-4-(4'-methylphenyl)-11*H*-benzo[*a*]carbazol-1-carbonitrile **(8e)**

Fig. S16. ¹H NMR spectrum of 2-amino-10-methyl-3-nitro-4-(4'-methylphenyl)-11*H*-benzo[*a*]carbazol-1-carbonitrile **(8f)**

Fig. S17. ¹H NMR spectrum of 2-amino-8-chloro-3-nitro-4-(4'-methylphenyl)-11H-benzo[a]carbazol-1-carbonitrile

Fig. S18. ¹³ C NMR spectrum of 2-amino-8-chloro-3-nitro-4-(4'-methylphenyl)-11*H*-benzo[*a*]carbazol-1-carbonitrile (8g)

Fig. S19. ¹H NMR spectrum of 2-amino-3-nitro-4-(4'-methylphenyl)-11*H*-benzo[*a*]carbazol-1-carbonitrile (8h)

Fig. S20. ¹³ C NMR spectrum of 2-amino-3-nitro-4-(4'-methylphenyl)-11*H*-benzo[*a*]carbazol-1-carbonitrile (8h)

Fig. S21. ¹H NMR spectrum of 2-amino-8-methyl-3-nitro-4-phenyl-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (9a)

Fig. S22. ¹³C NMR spectrum of 2-amino-8-methyl-3-nitro-4-phenyl-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (9a)

Fig. S23. HRM spectrum of 2-amino-8-methyl-3-nitro-4-phenyl-5,6-dihydro-11H-benzo[a]carbazol-1-carbonitrile

Fig. S24. ¹H NMR spectrum of 2-amino-10-methyl-3-nitro-4-phenyl-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile **(9b)**

Fig. S25. ¹³C NMR spectrum of 2-amino-8-chloro-3-nitro-4-phenyl-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (9c)

Fig. S26. ¹H NMR spectrum of 2-amino-3-nitro-4-phenyl-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (9d)

Fig. S27. ¹³C NMR spectrum of 2-amino-3-nitro-4-phenyl-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (9d)

Fig. S28. ¹H NMR spectrum of 2-amino-8-methyl-3-nitro-4-(4'-methylphenyl)-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (**9e**)

g. S29. ¹³C NMR spectrum of 2-amino-8-methyl-3-nitro-4-(4'-methylphenyl)-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (9e)

Fig. S30. ¹H NMR spectrum of 2-amino-8-chloro-3-nitro-4-(4'-methylphenyl)-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile **(9g)**

Fig. S31. ¹³C NMR spectrum of 2-amino-8-chloro-3-nitro-4-(4'-methylphenyl)-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile (**9g**)

Fig. S32. ¹³C NMR spectrum of 2-amino-3-nitro-4-(4'-methylphenyl)-5,6-dihydro-11*H*-benzo[*a*]carbazol-1-carbonitrile **(9h)**

g. S33. ¹H NMR spectrum of 2-imino-8-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (11a)

g. S34. ¹³C NMR spectrum of 2-imino-8-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile **(11a)**

12/28/17 11:43:51

Fig. S35. HRMS spectrum of 2-imino-8-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**11a**)

g. S36. ¹H NMR spectrum of 2-imino-10-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile **(11b)**

g. S37. ¹H NMR spectrum of 2-imino-8-chloro-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**11c**)

Fig. S38. ¹³C NMR spectrum of 2-imino-8-chloro-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile **(11c)**

Fig. S39. HRMS spectrum of 2-imino-8-chloro-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**11c**)

Fig. S40. ¹H NMR spectrum of 2-imino-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**11d**)

g. S41. ¹³C NMR spectrum of 2-imino-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**11d**)

Fig. S42. HRMS spectrum of 2-amino-8-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**12a**)

Fig. S43. ¹H NMR spectrum of 2-amino-10-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**12b**)

Fig. S44. ¹³C NMR spectrum of 2-amino-10-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**12b**)

12/28/17 11:21:33

Fig. S45. HRMS spectrum of 2-amino-10-methyl-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**12b**)

Fig. S46. ¹H NMR spectrum of 2-amino-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**12d**)

12/28/17 11:34:57

Fig. S47. HRMS spectrum of 2-amino-1'-oxo-5,6-dihydro-11*H*-spiro[acenaphthylene-8',4-benzo[*a*]carbazole]-1,3,3-tricarbonitrile (**12d**)